
Exercice 1 : 
Oral Mines-Ponts 2023 (MP) 

1. Soit un entier  
Montrer que l’équation  admet une unique solution dans  

On la note  

2. Etudier la monotonie et la convergence de  
Indice : on pourra s’intéresser aux images de  et  par une des 2 fonctions  ou . 

3. Déterminer un équivalent de  en  

4. [Bonus] Donner un développement asymptotique à 2 termes 

Corrigé : 

1. On introduit une fonction intermédiaire  que l’on va définir par : 
 

Remarque : on pourrait évidemment définir  sur , mais l’exercice se concentre uniquement sur  
donc ça n’apporterait rien de particulier, à part compliquer l’étude de la fonction ! 

Attention : dans cette question, on considère un  quelconque, mais fixé !  varie uniquement à partir 
de la question suivante. Pour te représenter les choses, n’hésite pas à utiliser la calculatrice ou Géogebra 
pour tracer les courbes de  et  par exemple (idéalement, prends 
une fois  pair et une fois  impair). 

 est une fonction polynomiale donc continue et dérivable sur  et on a : 
 

Donc  
Et même plus,  
Ainsi  est strictement décroissante sur  

De plus,  et  

Ainsi,  réalise une bijection de  sur  

Ce qui confirme bien que l’équation  admet une unique solution  dans  

2. Commençons par étudier la monotonie de la suite. 
Compte-tenu de la définition de la suite on comprend qu’on ne va pas pouvoir utiliser le traditionnel 

. Tu as probablement essayer, n’hésite pas à me dire si tu as pu avancer sur cette voie ! 

Idée :  est définie uniquement par rapport à  et nous allons donc devoir utiliser cela. On va s’intéresser 
aux images de  et  par une des 2 fonctions  ou  et utiliser la monotonie de la fonction. C’est pour 
cela que j’ai rajouté l’indice dans l’énoncé qui ne figure évidemment pas dans l’oral de concours ! 

n ⩾ 2
xn − n x + 1 = 0 [0; 1]

xn

(xn)
xn xn+1 fn fn+1

xn +∞

fn
∀x ∈ [0; 1], fn (x) = xn − n x + 1

fn ℝ [0; 1]

n ⩾ 2 n

f4 (x) = x4 − 4x + 1 f5 (x) = x5 − 5x + 1
n n

fn [0; 1]
∀x ∈ [0; 1], f ′￼n (x) = n xn−1 − n = n (xn−1 − 1)

∀x ∈ [0; 1], f ′￼n (x) ⩽ 0
∀x ∈ [0; 1[, f ′￼n (x) < 0

fn [0; 1]
fn (0) = 1 fn (1) = 2 − n ⩽ 0

fn [0; 1] [2 − n; 1]

xn − n x + 1 = 0 xn [0; 1]

xn+1 − xn

xn fn
xn xn+1 fn fn+1
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Soit , on a  (attention, j’utilise bien  !) 

Or, par définition de ,  

Ainsi,  

Comme par définition  et d’après la question précédente  est décroissante, on peut 
conclure que  

Et donc  est décroissante. 

 est décroissante et minorée par  donc convergente vers une limite , d’après le théorème de 
la limite monotone. 
On s’assure de l’intervalle ouvert simplement avec  et donc . 

Reprenons une nouvelle fois la définition de , qu’on peut réécrire  

Quand , d’après la remarque précédente, on a  
On en déduit que  
 
Or, si , on a  et  

Ce qui impose que  converge vers . 

3.  La question précédente nous donne immédiatement l’équivalence ! 
 
En repartant de  quand  : 

On déduit que . 

4. On change de registre pour cette dernière question ! 

Rappel : trouver un développement asymptotique signifie trouver un équivalent à . 

Pour simplifier la rédaction, on pose  

On utilise à nouveau la définition de  pour écrire : 

 

Or  

On a donc  

On sait par définition de  (et définition de l’équivalence) que . 

n ⩾ 2 fn+1 (xn) = xn+1
n − (n + 1) xn + 1 = xn+1

n − n xn − xn + 1 fn+1

xn −n xn + 1 = − xn
n

fn+1 (xn) = xn+1
n − xn

n − xn = xn
n (xn − 1) − xn ⩽ 0

fn+1 (xn+1) = 0 fn+1
xn ⩾ xn+1

(xn)

(xn) 0 l ∈ [0; 1[
f3 (1) = − 1 x3 < 1

xn n xn = 1 + xn
n

n → + ∞ xn
n → 0

n xn → 1

l > 0 n xn ⩾ nl nl → + ∞

(xn) 0

n xn → 1 n → + ∞

xn ∼
1
n

xn −
1
n

∀n ⩾ 2, un = xn −
1
n

xn

fn (xn) = (un +
1
n )

n

− n (un +
1
n ) + 1 = 0

(un +
1
n )

n

− n (un +
1
n ) + 1 = ( nun + 1

n )
n

− nun

nun = ( nun + 1
n )

n

un nun → 0
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Pour trouver un équivalent de , on doit trouver la limite de  

On sait que  

Rappel : (enfin pas vraiment rappel en fait) on a déjà dépassé la frontière de la Terminale, donc on continue 
avec une équivalence classique (ou développement limité si tu n’as pas peur des gros mots !) 

 en . 

Comme on a vu que , on peut facilement majorer cette quantité par  par exemple. 

Ainsi,  

Donc  

Attention : j’allais conclure un peu vite, je me rends compte que je n’ai pas vérifié le signe de  donc je ne 
peux pas appliquer le théorème des gendarmes ! On pourrait encadrer en minorant par la même méthode 
que la majoration, mais regardons une autre propriété de . 

Calculons  

Ainsi  et donc  (ouf !) 

Finalement,  et donc  et , ce qui nous permet de 

conclure que  ! 

Remarque : c’est l’intuition qu’on pouvait avoir avec le  dans les 2 membres de l’égalité, mais la preuve 
n’est pas triviale ! 
 

En reprenant l’égalité , on trouve  ou encore  

On trouve donc le développement asymptotique  

Remarque : le 2ème terme du développement est extrêmement petit avec ce terme  qui tend très 

rapidement vers .  se « rapproche » donc très vite de . Tu peux le vérifier en utilisant Géogebra par 

exemple pour déterminer les 1ers termes de la suite. 

un (1 + nun)n

(1 + nun)n = exp [n ln (1 + nun)] ∼ exp (n2un)

ln (1 + x) ∼ x 0

nun → 0 1

nun = ( nun + 1
n )

n

⩽ ( 1 + 1
n )

n

= ( 2
n )

n

n2un ⩽
2n

nn−1
= 2 ( 2

n )
n−1

un

un

fn ( 1
n ) = ( 1

n )
n

− n ( 1
n ) + 1 =

1
nn

> 0

xn >
1
n

un > 0

0 ⩽ n2un ⩽ 2 ( 2
n )

n−1

n2un → 0 exp (n2un) → 1

(1 + nun)n → 1

nun

nun = ( nun + 1
n )

n

nun ∼
1
nn

un ∼
1

nn+1

xn =
1
n

+
1

nn+1
+ o ( 1

nn+1 )
1

nn+1

0 xn
1
n
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Exercice 2 : 
Oral Mines-Ponts 2023 (MP) 

1. Soit un entier . 

Montrer que l’équation  admet une unique solution sur  

On la note . 

Indice : On pourra étudier la fonction  définie par  en reformulant l’équation 

que l’on doit résoudre. 

2. Montrer que  converge et déterminer sa limite. 

3. [Bonus] Donner un développement asymptotique de  avec une précision de  

Corrigé : 
1. Faisons déjà le lien entre la question et la fonction proposée : 

 (  est bien non nul sur l’intervalle) 

Et comme proposé par l’énoncé, on va étudier la fonction  pour prouver l’existence d’un unique antécédent 

à . 

Remarque 1 : l’indice n’est pas donné dans l’exercice d’oral. On va rapidement voir que c’est plus simple de 
passer par cette fonction que d’utiliser la même méthode que dans l’exercice précédent, même si cela aurait 
marché également. 

Remarque 2 : en plus ça tombe bien, c’est une fonction classique à connaitre ! 

 n’est évidemment pas définie en , nous allons commencer par étudier sa limite : 

 

Rappel : c’est une limite classique elle aussi pour laquelle il faut connaitre la méthode en reconnaissant la 
limite d’un taux d’accroissement et donc une dérivée ! 

Ainsi  

Et finalement  

 est bien continue et dérivable sur l’intervalle considéré , comme quotient de fonctions dérivables dont 
le dénominateur ne s’annule pas. 

 

Malheureusement, cela ne permet pas de conclure tout de suite sur le sens de variation de . 

Introduisons une fonction intermédiaire  qui sera du même signe que  définie par : 
 

 est bien dérivable sur  et  
 (car sur  ) 

n ⩾ 2
sin (x) =

x
n ]0; π[

xn

f ∀x ∈ ]0; π[, f (x) =
sin (x)

x

(xn)

(xn) o ( 1
n3 )

∀x ∈ ]0; π[, sin (x) =
x
n

⇔
sin (x)

x
=

1
n

x

f
1
n

f 0
lim
x→0

f (x) = lim
x→0

sin (x)
x

= lim
x→0

sin (x) − sin (0)
x − 0

lim
x→0

sin (x) − sin (0)
x − 0

= cos (0) = 1

lim
x→0

f (x) = 1

f ]0; π[

∀x ∈ ]0; π[, f ′￼(x) =
x cos (x) − sin (x)

x2

f

g f ′￼
∀x ∈ ]0; π[, g (x) = x cos (x) − sin (x)
g ]0; π[
∀x ∈ ]0; π[, g′￼(x) = cos (x) − x sin (x) − cos (x) = − x sin (x) ⩽ 0 ]0; π[ sin (x) ⩾ 0
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Donc  est décroissante sur  et . 

Ainsi, on peut affirmer que  

Et  est strictement décroissante sur  entre  et , comme on peut le voir sur la représentation 
ci-dessous : 

 

(La représentation est évidemment plus large que l’intervalle , mais comme je le disais au début, c’est 
une fonction à connaitre, donc j’en profite pour te mettre sa représentation. Je te laisse identifier la portion 
qui nous intéresse dans cet exercice, n’hésite pas si tu as des questions !) 

Finalement  réalise une bijection de  sur . 

De plus, on a bien  

Cela confirme bien que  possède un unique antécédent par  sur . 

Et finalement  admet une unique solution  sur  

2. On vient de voir que  réalise une bijection de  sur . 

On peut donc écrire que  (même si on ne sait pas l’exprimer) 

Or, comme  est décroissante et que la suite des images que l’on cherche l’est également (  est bien de 

plus en plus petit quand  grandit), on peut affirmer que  est croissante. 

Remarque : dit autrement,  est la suite des antécédents d’éléments de plus en plus petit, on voit sur le 
graphique que ces antécédents sont de plus en plus grands. 

 est croissante et majorée par  donc convergente. 

On a  qui tend vers  et par continuité de ,  va tendre vers son antécédent, qui est . 

g ]0; π[ g (0) = 0

∀x ∈ ]0; π[, f ′￼(x) =
x cos (x) − sin (x)

x2
< 0

f ]0; π[ 1 f (π) = 0

]0; π[

f ]0; π[ ]0; 1[
∀n ⩾ 2,

1
n

∈ ]0; 1[
1
n

f ]0; π[

sin (x) =
x
n

xn ]0; π[

f ]0; π[ ]0; 1[

xn = f −1 ( 1
n )

f
1
n

n (xn)
(xn)

(xn) π

1
n

0 f xn π
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 converge donc vers  

Remarque : on voit que la méthode utilisée a rendu ces 2 premières questions plus simple car on s’appuie 
sur l’utilisation d’une seule fonction et des propriétés de la continuité. On a détaillé l’étude de fonction ici, ce 
qui n’aurait pas été nécessaire pour un élève de prépa. 

3. J’espère que tu auras le courage d’aller jusqu’au bout, même si on est un peu loin du programme, on 
retrouve à la fin une astuce à avoir dans la boîte à outils ! C’est parti ! 

De la même façon que pour l’exercice précédent, on va introduire une suite intermédiaire  définit par 
. 

On sait que  et donc  

Repartons de la définition de  :  ou  

Or  

Et donc  

On utilise le développement limité classique en  au 1er degré :  
En replaçant ceci dans l’égalité : 

 

Ou encore  

Ainsi, au premier degré,  

En utilisant cette fois un DL au degré 3 de sinus :   

Ce qui donne  

 ou encore  

L’écriture un peu compliquée est volontaire, car on va reconnaître la somme d’une suite géométrique : 

 

Remarque : c’est une astuce hyper classique là encore ! Quand la raison est plus petite que , le 
numérateur de la somme vue en classe tend vers  et il ne reste que le . 

Dans notre cas, nous allons nous contenter des 1ers termes :  

Remarque : on s’arrête au terme en  car on multiplie ce développement par , donc on arrive sur un 

terme en  qui est ce que l’on cherche. 

(xn) π

(un)
∀n ⩾ 2, un = xn − π

∀n ⩾ 2, xn ⩽ π un ⩽ 0

xn sin (xn) =
xn

n
sin (un + π) =

un + π
n

sin (un + π) = − sin (un)

−sin (un) =
un + π

n

0 sin (un) = un + o (u2
n)

−un + o (u2
n) =

un + π
n

un +
un

n
+ o (u2

n) = −
π
n

un ∼ −
π
n

sin (un) = un −
u3

n

6n
+ o (u3

n)

un +
un

n
−

u3
n

6n
+ o (u3

n) = −
π
n

un (1 +
1
n ) = −

π
n

+
u3

n

6
+ o (u3

n) un = −
π
n

×
1

1 + 1
n

+
n

n + 1
×

u3
n

6
+ o (u3

n)

1

1 + 1
n

=
+∞

∑
k=0

(−
1
n )

k

1
0 1

1

1 + 1
n

= 1 −
1
n

+
1
n2

+ o ( 1
n2 )

1
n2

1
n

1
n3
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On a donc maintenant : 

 

Et d’autre part : 

 

Pour le dernier terme, avec l’équivalence au 1 degré, on a  

Finalement, en reprenant les différentes parties : 

 

Et on conclut : 

−
π
n

×
1

1 + 1
n

= −
π
n (1 −

1
n

+
1
n2

+ o ( 1
n2 )) = −

π
n

+
π
n2

−
π
n3

+ o ( 1
n3 )

n
n + 1

×
u3

n

6
=

π3

6n3
+ o ( 1

n3 )
o (u3

n) = o ( 1
n3 )

un = −
π
n

+
π
n2

−
π
n3

−
π3

6n3
+ o ( 1

n3 )

xn = π −
π
n

+
π
n2

−
1
n3 (π +

π3

6 ) + o ( 1
n3 )
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