
Bac Maroc 2024 - corrigé 

Exercice 1 
1. Avec la définition de , on peut écrire : 

 

Or  

 

Et ainsi,  

Comme on a posé , on conclut que  est continue à droite en . 

 
2. Par croissance comparée, on trouve que : 

. L’axe des abscisses est une asymptote à la courbe . 

3.
a. Soit  et  

On a donc  car  
Et  

En remplaçant, on obtient bien :  

b. Posons  

La fonction  est dérivable sur  et : 

 

On note que  

On a donc que  

D’après l’inégalité des accroissements finis : 

 

Or . 

f

∀x ∈ ]1; + ∞[, f (x) =
ln (x)
x2 − 1

=
ln (x)

(x + 1) (x − 1)
=

1
x + 1

×
ln (x)
x − 1

lim
x→1

ln (x)
x − 1

= ln′￼(1) = 1

lim
x→1+

f (x) =
1
2

f (1) =
1
2

f 1

lim
x→+∞

ln (x)
x2 − 1

= 0 (C )

x ∈ ]1; + ∞[ t = (x − 1)2

1 − x = − (x − 1) = − t 1 − x < 0
x = 1 + t

1 − x + ln (x)
(x − 1)2 =

− t + ln (1 + t)
t

∀t ∈ ]0; + ∞[, g (t) = − t + ln (1 + t)
g ]0; + ∞[

∀t ∈ ]0; + ∞[, g′￼(t) = −
1

2 t
+

1

2 t

1 + t
=

−1 − t + 1

2 t (1 + t)
= −

1

2 (1 + t)
∀t ∈ ]0; + ∞[, g′￼(t) < 0

∀t ∈ ]0; + ∞[, g′￼(t) <
1
2

∀t ∈ [0; + ∞], g (t) − g (0) <
1
2

t

g (0) = 0
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On a donc déjà  

A l’inverse  

Et donc  

En particulier pour ,  

Comme , on obtient bien :  

 

On arrive donc à l’encadrement  

Et finalement,  

c. Comme,  

On peut appliquer le théorème des gendarmes pour affirmer que : 

 

En repartant de l’égalité du 3.a, 

On conclut que  

4.
a. Étudions l’expression proposée : 

 

 

 

∀t ∈ [0; + ∞], −
1
2

t < − t + ln (1 + t)
∀x ∈ ]0; t],

1

2 (1 + t)
< g′￼(x)

∀x ∈ [0; t],
x

2 (1 + t)
< g (x)

x = t
t

2 (1 + t)
< g (t)

∀t ∈ ]0; + ∞[, g (t) < 0 − t + ln (1 + t) <
t

2 (1 + t)
∀t ∈ ]0; + ∞[, −

1
2

t < − t + ln (1 + t) < −
t

2 (1 + t)

∀t ∈ ]0; + ∞[, −
1
2

<
− t + ln (1 + t)

t
< −

1

2 (1 + t)

lim
t→0+

−
1

2 (1 + t)
= −

1
2

lim
t→0+

− t + ln (1 + t)
t

= −
1
2

lim
t→1+

1 − x + ln (x)
(x − 1)2 = −

1
2

∀x ∈ ]1; + ∞[,
f (x) − 1

2

x − 1
=

ln(x)

x2 − 1
− 1

2

x − 1
=

2 ln (x) − x2 + 1
2 (x2 − 1) (x − 1)

=
−(x − 1) ln (x) + (x + 1) ln (x) − (x − 1) (x + 1)

2 (x2 − 1) (x − 1)

=
−(x − 1) ln (x) + (x + 1) ln (x) − (x − 1) (x + 1)

2 (x2 − 1) (x − 1)
= −

ln (x)
x − 1

×
1

2 (x + 1)
+

ln (x) − x + 1
2 (x − 1)2
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Remarque : on « force » l’apparition des différents éléments, en particulier le découpage des . En 
remettant les 2 membres de la somme de la réponse au même dénominateur on trouve rapidement le bon 
agencement. 

Et donc  

b. Quand  : 

Comme ,  est le taux d’accroissement de la fonction logarithme en  et donc  

Ainsi,  

Et en reprenant le résultat de la question précédente, on trouve que  

Et donc  

 

On reconnait l’expression du taux d’accroissement  

On conclut donc que  est dérivable à droite en  et . 

 admet donc une tangente de pente  en . 

5.

a. Notons déjà que  et  

Ce qui implique que  et  

On peut donc déjà affirmer que  et  

De plus  

 (car ). 

 
D’où  

Et finalement  

b. Calculons les 2 intégrales : 

2 ln (x)

∀x ∈ ]1; + ∞[,
f (x) − 1

2

x − 1
= −

ln (x)
x − 1

×
1

2 (x + 1)
+

ln (x) − x + 1
2 (x − 1)2

x → 1
ln (1) = 0

ln (x)
x − 1

1
ln (x)
x − 1

→ 1

−
ln (x)
x − 1

×
1

2 (x + 1)
→ −

1
4

lim
x→1+

ln (x) − x + 1
2 (x − 1)2 = −

1
4

lim
x→1+

f (x) − 1
2

x − 1
= −

1
4

−
1
4

= −
1
2

f (x) − f (1)
x − 1

f 1 f ′￼(1) = −
1
2

f −
1
2

x = 1

∀t ∈ [1; + ∞[,
t2 − 1

t3
⩾ 0

t2 − 1
t2

⩾ 0

∀x ∈ [1; + ∞[, ∫
x

1

t2 − 1
t3

dt ⩾ 0 ∫
x

1

t2 − 1
t2

dt ⩾ 0

∀x ∈ [1; + ∞[, I (x) ⩾ 0 J (x) ⩾ 0

∀x ∈ [1; + ∞[, I (x) − J (x) = ∫
x

1

t2 − 1
t3

dt − ∫
x

1

t2 − 1
t2

dt = ∫
x

1

t2 − 1
t3

−
t2 − 1

t2
dt

∫
x

1

t2 − 1
t2 ( 1

t
− 1) dt ⩽ 0

1
t

− 1 ⩽ 0

∀x ∈ [1; + ∞[, I (x) ⩽ J (x)

∀x ∈ [1; + ∞[, 0 ⩽ I (x) ⩽ J (x)

©antoine.remond.maths@gmail.com

mailto:antoine.remond.maths@gmail.com


 

 

Ce qu’on peut bien écrire  

 

 

 

c.  est bien dérivable sur  comme quittent de fonctions qui le sont et donc le dénominateur ne 
s’annule pas. 

Et  

D’un autre côté  

 

Et ainsi,  

Remarque : on travaille avec  exclu, donc il n’y a pas de problème de définition des quotients. 

d. On note déjà que dans l’expression  tous les facteurs sont strictement positifs 

pour  (je te laisse vérifier si besoin !). Donc le «   » nous assure que . 
 

De plus, d’après la question 5.a,  et  

Finalement, on peut encadrer  

6. En reprenant les éléments, on constate que le tableau de variations de  est relativement simple, puisque 

la fonction est strictement décroissante entre  et  

∀x ∈ [1; + ∞[, I (x) = ∫
x

1

t2 − 1
t3

dt = ∫
x

1

1
t

−
1
t3

dt = [ln (t) +
1

2t2 ]
x

1

= ln (x) +
1

2x2
− ln (1) −

1
2

= ln (x) +
1

2x2
−

1
2

∀x ∈ [1; + ∞[, I (x) = ln (x) −
x2 − 1

2x2

∀x ∈ [1; + ∞[, J (x) = ∫
x

1

t2 − 1
t2

dt = ∫
x

1
1 −

1
t2

dt = [t +
1
t ]

x

1
= x +

1
x

− 1 − 1 =
x2 − 2x + 1

x

∀x ∈ [1; + ∞[, J (x) =
(x − 1)2

x

f ]1; + ∞[

∀x ∈ ]1; + ∞[, f ′￼(x) =
1
x (x2 − 1) − 2x ln (x)

(x2 − 1)2 = (x2 − 1) − 2x2 ln (x)

x (x2 − 1)2

−2
(x + 1)2 ×

I (x)
J (x)

=
−2

(x + 1)2 ×
ln (x) − x2 − 1

2x2

(x − 1)2

x

=
−2

(x + 1)2 ×
x 2x2 ln (x) − x (x2 − 1)

2x2 (x + 1)2

=
−2

(x + 1)2 ×
2x2 ln (x) − (x2 − 1)

2x (x − 1)2 = (x2 − 1) − 2x2 ln (x)

x (x2 − 1)2

∀x ∈ ]1; + ∞[, f ′￼(x) =
−2

(x + 1)2 ×
I (x)
J (x)

1

f ′￼(x) =
−2

(x + 1)2 ×
I (x)
J (x)

x > 1 − ∀x ∈ ]1; + ∞[, f ′￼(x) < 0

0 <
I (x)
J (x)

⩽ 1 (x + 1)2 ⩾ (1 + 1)2 = 4

∀x ∈ ]1; + ∞[, −
1
2

⩽ f ′￼(x) ⩽ 0

f
1
2

0
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D’où le tableau : 

Et la courbe  :  

7. Considérons la fonction  définie sur  par  
 

Cette fonction est bien dérivable sur  et : 
 

Donc  est strictement décroissante sur  

De plus,  

Et  

D’après le théorème des valeurs intermédiaires,  admet une unique solution dans . 

Et par définition de , on conclut que  admet une unique solution dans . 

8.
a. Remarquons déjà rapidement que la suite  est bien définie, car  est à valeurs strictement positive, 

donc  est bien supérieur à . 

Par définition de  et de , on peut écrire :  

En 5.d, on a vu que . On peut à nouveau utiliser le théorème des 

accroissements finis pour affirmer que : 

 

Ainsi on obtient bien . 

(C )

h ]1; + ∞[
∀x ∈ ]1; + ∞[, h (x) = f (x) − x + 1

]1; + ∞[
∀x ∈ ]1; + ∞[, h′￼(x) = f ′￼(x) − 1 < 0

h ]1; + ∞[

h (1) = f (1) − 1 + 1 =
1
2

> 0

h (2) = f (2) − 2 + 1 =
ln (2)
22 − 1

− 1 =
ln (2)

3
− 1 ≈ 0,77 < 0

h (x) = 0 ]1; 2[
h f (x) = x − 1 ]1; 2[

(an) f
1 + f (an) 1

a (an) an+1 − a = 1 + f (an) − f (a) − 1 = f (an) − f (a)

∀x ∈ ]1; + ∞[, f ′￼(x) ⩽
1
2

∀x ∈ ]1; + ∞[, f (an) − f (a) ⩽
1
2

an − a

∀n ∈ ℕ, an+1 − a ⩽
1
2

an − a
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b.  La proposition à démontrer est  

Initialisation : 

Au rang , nous avons trivialement  

Hérédité : 
Supposons la proposition vraie au rang  et étudions le rang . 

D’après la question précédente,  

Et d’après l’hypothèse de récurrence,  

Ainsi,  

Ce qui confirme bien l’hérédité de la proposition. 

On conclut donc que  

c. Comme , on a  

Ainsi,  

Et donc  converge vers . 

Exercice 2 
1.
a. D’après le théorème fondamental de l’analyse, comme  est continue sur ,  est une 

primitive de . 
 
Donc  est dérivable sur  et  

Donc  est continue et strictement croissante sur . 

b. Comme  est strictement croissante, elle représente bien une bijection. 
 

De plus  et  

Et donc  est une bijection entre  et . 

2.

a. On note  

∀n ∈ ℕ, an − a ⩽ ( 1
2 )

n

a0 − a

n = 0 a0 − a ⩽ ( 1
2 )

0

a0 − a = a0 − a

n n + 1
an+1 − a ⩽

1
2

an − a

an − a ⩽ ( 1
2 )

n

a0 − a

an+1 − a ⩽
1
2

an − a ⩽
1
2

× ( 1
2 )

n

a0 − a = ( 1
2 )

n+1

a0 − a

∀n ∈ ℕ, an − a ⩽ ( 1
2 )

n

a0 − a

1
2

< 1 lim
n→+∞ ( 1

2 )
n

= 0

lim
n→+∞

an − a = 0

(an) a

f : t ↦ et2 [0; 1] F
f

F [0; 1] ∀x ∈ [0; 1], F′￼(x) = ex2 > 0

F [0; 1]

F

F (0) = ∫
0

0
et2dt = 0 F (1) = ∫

1

0
et2dt = β

F [0; 1] [0; β]

∀n ∈ ℕ*, Sn =
1
n

n

∑
k=1

F−1 ( k
n

β)
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On reconnaît la formule de Riemann (au facteur  près qui nous donne) : 

 

Et donc  

Autrement dit,  

Donc  converge vers  

b. Effectuons le changement de variable proposé  
D’où  
 

Ainsi,  

Et finalement  

 

c.  

Et donc  

Exercice 3 
Partie I 
1.
a.  

La formule du discriminant est la même que pour des coefficients réels : 
 

Donc on a bien  

 
b.  admet 2 solutions distinctes ssi , donc ssi  

Donc  admet 2 solutions distinctes ssi  
 
2. Là encore, on utilise la même formule qu’habituellement «   » 

On a donc  et . 

β

lim
n→+∞

β
n

n

∑
k=1

F−1 ( k
n

β) = ∫
β

0
F−1 (t) dt

lim
n→+∞

1
n

n

∑
k=1

F−1 ( k
n

β) =
1
β ∫

β

0
F−1 (t) dt

lim
n→+∞

Sn =
1
β ∫

β

0
F−1 (t) dt

(Sn) l =
1
β ∫

β

0
F−1 (t) dt

u = F−1 (t)
dt = F′￼(u) du = eu2du

l =
1
β ∫

β

0
F−1 (t) dt =

1
β ∫

F−1(β)

F−1(0)
ueu2du

l =
1
β ∫

1

0
ueu2du

1
β ∫

1

0
ueu2du =

1
β [ 1

2
eu2]

1

0
=

e − 1
2β

l =
e − 1

2β

(Eα) : z2 − 2iz + α = 0

Δ = (−2i)2 − 4α = − 4 − 4α = − 4 (1 + α)

Δ = − 4 (1 + α)

(Eα) Δ ≠ 0 −4 (1 + α) ≠ 0

(Eα) α ≠ − 1

P (x) = x2 − sx + p

z1 + z2 = 2i z1z2 = α
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Partie II 
1.
a. On a  avec  
On trouve donc  
 

On trouve donc  et  

Donc  et  

 
b.  et  sont imaginaires purs. 

Donc  et  sont alignés. 

2. On ne peut pas avoir les 2 racines nulles, on supposera donc que  

a. Si  est un imaginaire pur, il existe un complexe  tel que  

Ainsi . Ce qui signifie donc que  

Réciproquement, on suppose que . 

 

Donc  est un imaginaire pur si et seulement si . 

b.  

Or  donc  et finalement  

 
 

De la même façon, on trouve  

Et donc  

c. Comme vu à la question 2.a,  est un imaginaire pur est équivalent à  

Et avec la question précédente,  

 

Or, on a vu en question I.2 que  et donc  

Et donc  

α = m2 − 2m m ∈ ℝ
Δ = − 4 (1 + α) = − 4 (1 + m2 − 2m) = − 4 (m − 1)2 ∈ ℝ−

z1 =
2i + 2 m − 1 i

2
= (1 + m − 1 ) i z2 = (1 − m − 1 ) i

z1 = (1 + m − 1 ) i z2 = (1 − m − 1 ) i

z1 z2

O, M1 M2

z2 ≠ 0
z1

z2
a z1 = iaz2

z1z2 = iaz2z2 = ia z2
2

∈ iℝ Re (z1z2) = 0

Re (z1z2) = 0
z1

z2
=

z1z2

z2z2
=

z1z2

z2
2 ∈ iℝ

z1

z2
Re (z1z2) = 0

z1 − z2
2

= (z1 − z2) (z1 − z2) = (z1 − z2) (z1 − z2) = z1z1 + z2z2 − z1z2 − z1z2

z1z2 = z1z2 z1z2 + z1z2 = 2Re (z1z2)
z1 − z2

2
= z1

2
+ z2

2
− 2Re (z1z2)

z1 + z2
2

= z1
2

+ z2
2

+ 2Re (z1z2)

z1 − z2
2

= z1 + z2
2

− 4Re (z1z2)
z1

z2
Re (z1z2) = 0

z1

z2
∈ iℝ ⇔ z1 − z2

2
= z1 + z2

2

z1 + z2 = 2i z1 − z2
2

= z1 + z2
2

= 4

z1

z2
∈ iℝ ⇔ z1 − z2 = 2
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3.
a. On a vu dans la 1ère question que  

On sait par ailleurs que  

Donc  
Et comme , on trouve  
 
Par ailleurs  

Donc on confirme  

b.  rectangle en  se « traduit » par  est imaginaire pur. 

Comme , donc  

Et  
 
D’où finalement  

Donc  correspond au cercle de centre  et de rayon . 

Exercice 4 
1.  
a.  

Donc  

On trouve par ailleurs  

 
b. La question précédente nous indique que  

Et donc la loi  n’est pas commutative dans . 

2. Considérons  et  dans  et  et  dans . 

On a d’une part  

 

Et d’autre part  

 

Donc  

Et donc la loi  est associative dans . 

Δ = − 4 (1 + α)

z1 + z2 = 2i
(z1 + z2)2 = z2

1 + z 2
2 + 2z1z2 = − 4

z1z2 = α z2
1 + z 2

2 = − 4 − 2α

(z1 − z2)2 = z2
1 + z 2

2 − 2z1z2 = − 4 − 2α − 2α = − 4 (1 + α) = Δ

(z1 − z2)2 = Δ

OM1M2 O
z1

z2

(z1 − z2)2 = Δ z1 − z2
2

= Δ = 4
Δ = 4 1 + α = 4

1 + α = 1

Γ (−1; 0) 1

(i; 2) T (1; i) = (i × −i + 1; 2i) = (2; 2i)
(i; 2) T (1; i) = (2; 2i)

(1; i) T (i; 2) = (2 + i; 2i)

(1; i) T (i; 2) ≠ (i; 2) T (1; i)
T ℂ × ℂ*

a , c e ℂ b, d f ℂ*

[(a; b) T (c; d)] T (e; f ) = (a d + c; bd) T (e; f ) = ((a d + c) f + e; bd f)
= (a d f + c f + e; bd f )

(a; b) T [(c; d) T (e; f )] = (a; b) T (c f + e; d f ) = (a d f + c f + e; bd f )

[(a; b) T (c; d)] T (e; f ) = (a; b) T [(c; d) T (e; f )]
T ℂ × ℂ*

©antoine.remond.maths@gmail.com

mailto:antoine.remond.maths@gmail.com


3. Prenons  et  dans  
 

Et  
 
Et donc  

Donc  est l’élément neutre de . 

4.

a. Soit ,  

b. D’après les questions précédentes,  est une loi interne de , associative et pour laquelle tous les 
éléments de  ont un opposé.  n’est par contre pas commutative. 

Donc  est un groupe non commutatif. 

5.
a. pour un réel , on a , et donc : 

 

Ainsi  est stable par . 

b. L’élément neutre de  est bien dans  et l’associativité reste vraie. 
L’opposé est également dans  (là encore car le conjugué d’un réel est un réel). 

On peut donc conclure que  est un sous-groupe de . 

Exercice 5 
1.
a. Comme  et  sont premiers et que  est premier avec eux, on peut appliquer le petit théorème de 

Fermat. 

On a donc : 
, ce qui est équivalent à  est un multiple de  

 
Et , ce qui est équivalent à  est un multiple de  

Donc  divise  et  divise . 

b. Comme , on déduit que  
 
De la même façon  

Ainsi,  et  divisent . 

a b ℂ
(a; b) T (0; 1) = (a × 1 + 0; b) = (a; b)

(0; 1) T (a; b) = (0 × b + a; 1 × b) = (a; b)
(0; 1) T (a; b) = (a; b) T (0; 1) = (a; b)

(0; 1) T

(a; b) ∈ ℂ × ℂ* (a; b) T (−
a
b

;
1
b ) = ( a

b
−

a
b

; b ×
1
b ) = (0; 1)

T ℂ × ℂ*
ℂ × ℂ* T

(ℂ × ℂ*, T)

d d = d ∈ ℝ
∀((a; b); (c; d)) ∈ (ℝ × ℝ*)2, (a; b) T (c; d) = (a d + c; bd) = (a d + c; bd) ∈ ℝ × ℝ*

ℝ × ℝ* T

T ℝ × ℝ*
ℝ × ℝ*

ℝ × ℝ* (ℂ × ℂ*, T)

p q r

rp−1 ≡ 1 [p] rp−1 − 1 p

rq−1 ≡ 1 [q] rq−1 − 1 q

p rp−1 − 1 q rq−1 − 1

rp−1 ≡ 1 [p] (rp−1)q−1 = r(p−1)(q − 1) ≡ 1 [p]
r(p−1)(q − 1) ≡ 1 [q]

p q r(p−1)(q − 1) − 1
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c. D’après la question précédente,  et  divisent . 
Et comme  et  sont premiers (et donc premiers entre eux) leur produit divise . 

Donc  divise . 

2. Posons ,  (qui sont bien premiers) et , qui est bien premier avec  et . 

On a de plus  et  

Et donc  qui divise  ou encore . 
 
Ce qui implique que si  alors  

Les solutions de l’équation sont . 

p q r(p−1)(q − 1) − 1
p q r(p−1)(q − 1) − 1

pq r(p−1)(q − 1) − 1

p = 13 q = 17 r = 2024 13 17

13 × 17 = 221 (13 − 1) × (17 − 1) = 12 × 16 = 192

221 2024192 − 1 2024192 ≡ 1 [221]
2024192x ≡ 3 [221] x ≡ 3 [221]

x = 3 + 221k , k ∈ ℤ
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