
Bac Maroc Septembre 2023 

Exercice 1 
Partie I 
1.
a. En utilisant les priorités du logarithme, on peut écrire : 

 

 
Et donc, en regroupant les termes comme proposé dans l’énoncé, on trouve : 

 

 étant fixé dans  (ce qui nous assure que ), on sait, par croissance comparée que  

 

 
Et donc  

Ainsi, par définition de , on conclut que  est continue à droite en . 
 
b. Pour la limite en , il n’y a pas de forme indéterminée, je n’insiste donc pas : 

 

 

c.  

Et donc  

 
On peut à nouveau utiliser la croissance comparée pour déduire que : 

 

Cette limite signifie que la courbe  admet une branche infinie de direction asymptotique l’axe des 
abscisses. 
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d. Quand ,  et , donc  

Et donc, si  est pair, on a  et si  est impair, on a  

On reconnaît un taux d’accroissement  

Et donc  va avoir une tangente verticale en , dont l’orientation est donnée par la parité de . 

2.
a.  est dérivable sur  comme produit de fonctions qui le sont. 

Rappel : je rappelle au passage que  n’est pas dérivable en  ! 
 

 

Et finalement,  

b. Soit  

, donc  si  (et donc ) ou . 

Or  
Et  

Donc ,  si et seulement si  ou  

c. Commençons par considérer  impair. Dans ce cas,  : 

 et  

Donc  est du signe de , ce qui donne le tableau de variation : 
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Traitons maintenant le cas  pair. 
Cette fois,  est du signe de  et donc : 

Remarque : je te laisse faire le tableau de signes plus détaillé si besoin ! 

d. Étudions la dérivée seconde de  
Rappel : Un point d’inflexion correspond à un point changement de convexité, ce qui se caractérise par un 
changement de la dérivée seconde. 

 est bien 2 fois dérivable sur  car  est dérivable en tant que produit de fonctions qui le sont. 

 

 

Comme , au voisinage de , . 

Donc  est du signe de  et donc de , qui change bien de signe en . 

Donc pour , le point d’abscisse  est un point d’inflexion de  

Partie II 
1.
a. Soit  et  
Par définition,  

Or , donc  et  

Donc on a bien  

b. Étudions le sens de variation de  

 
 
Or , donc . 

Ainsi, la suite  est bien décroissante. 

c.  est décroissante et minorée, donc convergente. 
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Comme ,  et  

Et donc  

2.
a. D’après la partie I on sait déjà que  est continue et strictement croissante sur . 

De plus,  et  

Cela nous assure de l’existence d’un unique  tel que  

b. Par définition de ,  

Or  
 
Comme ,  et comme  est croissante,  

Et donc  est croissante. Comme elle est majorée par , elle converge. 

3.
a. On sait que . 

Par l’absurde, si ,  et donc , ce qui implique que 

. 

Ainsi, on conclut que  

b.  

Par continuité de la fonction racine carrée et la propriété du produit des limites, on a donc : 
 

Et finalement  

c. Si , comme  est croissante,  et donc  

Ainsi  et par continuité du logarithme :

 

Donc si ,  

d. Par ailleurs, d’après la question b, en utilisant le même passage à la limite, on obtient : 

 

Les 2 résultats sont donc contradictoires ! 

Ce qui impose donc que . 
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Partie III 
1.
a.  est définie par : 

 

 
Comme  est continue sur ,  

le théorème fondamental de l’analyse nous assure que  est continue sur . 

b. Utilisons des intégrations par parties comme proposé dans l’énoncé : 

 

 

Et donc  

2.
a. Par croissance comparée, on obtient : 

Quand ,  et . 

Et finalement,  

 
b. Par continuité de , 

On déduit que  

c. Pour obtenir le volume recherché, on va utiliser la formule, en notant  le volume à calculer : 

 

Rappel : cette formule correspond en fait à une « somme infinie » de petits disques de rayon  et de 
hauteur  
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Exercice 2 
Partie I 
1.

a. En posant , notons déjà que  

On remarque également que  n’est pas solution de  donc . 

 étant solution de , on peut faire une combinaison linéaire des 2 lignes «   » qui 
donne : 

 

Or  

Rappel : pour ,  

Et finalement  

b. Comme , on peut multiplier les 2 membres de l’égalité précédente par  : 

 

 

Et donc  

 

 

En introduisant l’identité indiquée dans l’énoncé, on trouve : 

 

Et finalement  
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c. La première valeur de  implique que  ce qui est impossible avec  ! 

Le seul couple possible pour  est donc  

 
2. On vérifie que  est bien solution de  ! 

Finalement, la solution de  est  

Partie II 
1. Montrons la double implication, en commençant par noter que dans les 2 sens, l’hypothèse implique que 

 (je ne le repréciserai donc pas par la suite) : 

 

Si  

 

Si  

Ce qui confirme que . 

2. Par construction, tous les points considérés ont une affixe de module . Nous pourrons donc utiliser la 
relation de la question précédente. 

a. Par construction de , les droites  et  étant parallèles,  et  sont colinéaires. 

Rappel : l’argument du quotient des affixes de 2 vecteurs représentent l’angle formé par ces 2 vecteurs. 
De plus, l’angle formé par 2 vecteurs colinéaires vaut , ce qui caractérise un nombre réel 

Cette relation signifie  ce qu’on peut traduire par  

Or  

Et l’égalité devient donc  ou  

 

Et donc  

Ce qui permet de conclure  

b. Nous utilisons le même principe pour cette question. 
Cette fois,  et  sont orthogonaux. 
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Cela signifie cette fois  ce qu’on peut traduire par  

Je ne remets pas le calcul qui est le même que pour la question précédente, on trouve finalement 

 

Et donc  

c. Considérons maintenant le rapport des affixes de  et  

Utilisons le résultat de la question 2.a pour affirmer que . 

On a d’une part :  

Et 

 

 

Ainsi,  

Et donc  et  sont orthogonales. 
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Exercice 3 
1. En prenant  on vérifie que l’élément neutre de  est bien élément de  
De plus, si on considère  et  2 éléments de , on a : 

 

Donc  est stable par addition. 
 
De plus  

Les 3 propriétés vérifiées confirment que  est un sous-groupe de  

2.
a. La loi  dans  pouvant être « décomposée » en 2 additions, son éléments neutre est 

 

Comme , on confirme que  préserve l’élément neutre. 

De plus en reprenant la question précédente et par construction de , on vérifie également que : 

 

 

La deuxième partie de la question est triviale, en faisant parcourir  à  et , les images vont parcourir  
et . 

Ainsi  est bien un homomorphisme de  vers  et  

b. La stabilité par  et la commutativité sont assurées par l’arithmétique sur  et . 
 
Chaque élément a bien un opposé  

 est un groupe commutatif. 

3.
a. Soit . On a avec les propriétés connues de  et  : 

 

Et donc  est commutative. 

b. Soit ,  
 

Et  est bien l’élément neutre de  

c.  

Soient  
 

 

Et donc  n’est pas associative. 

(a , b, c) = (0,0,0) (M3 (ℝ), +) E
M (a , b, c) M′￼= M (a′￼, b′￼, c′￼) E

M + M′￼=
a 0 0
0 b −c
0 c b

+
a′￼ 0 0
0 b′￼ −c′￼
0 c′￼ b′￼

=
a + a′￼ 0 0

0 b + b′￼ −c − c′￼
0 c + c′￼ b + b′￼

= M (a + a′￼, b + b′￼, c + c′￼) ∈ E

E

M (−a , − b, − c) = − M (a , b, c)
E (M3 (ℝ), +)

* ℝ × ℂ
(0,0 + 0i ) = (0,0)

φ (M (0,0,0)) = (0,0 + 0i ) = (0,0) φ

*
φ (M (a , b, c) + M (a′￼, b′￼, c′￼)) = φ (M (a + a′￼, b + b′￼, c + c′￼)) = (a + a′￼, b + b′￼+ (c + c′￼) i)
= (a , b + ci) * (a′￼, b′￼+ c′￼i) = φ (M (a , b, c)) * φ (M (a′￼, b′￼, c′￼))

ℝ a , b c ℝ
ℂ

φ (E, +) (ℝ × ℂ, * ) φ (E ) = ℝ × ℂ

* ℝ ℂ

−(x , z) = (−x , − z)

(ℝ × ℂ, * )

((x , z), (x′￼, z′￼)) ∈ (ℝ × ℂ)2 ℝ ℂ
(x , z) T (x′￼, z′￼) = (xRe (z′￼) + x′￼Re (z), z z′￼) = (x′￼Re (z) + xRe (z′￼), z′￼z) = (x′￼, z′￼) T (x , z)

T

(x , z) ∈ ℝ × ℂ
(x , z) T (0,1) = (x × 1 + 0 × Re (z), z × 1) = (x , z)

(0,1) T

∀x ∈ ℝ, (1,i ) T (x , − i ) = (1 × Re (−i ) + x × Re (i ), i × −i) = (0,1)

(x , z) ∈ ℝ × ℂ, x′￼∈ ℝ
(x , z) T ((1,i ) T (x′￼, − i )) = (x , z) T (0,1) = (x , z)
((x , z) T (1,i )) T (x′￼, − i ) = (Re (z), i z) T (x′￼, − i ) = (x′￼Re (z), z) ≠ (x , z)

T
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4.
a. Par définition de , on a  

 et . 

De plus, si on prend  et  dans , on a : 
 

Et donc  est un sous-groupe de  

b.  est l’élément neutre de  et on a bien  qui est l’élément neutre de  
 

Or  
 

 
Ainsi,  

Et donc  est un homomorphisme de  vers  

c. La question précédente permet de vérifier que : 

Dans , l’inverse de  est  

Et que  est commutatif dans . 
 
On peut également s’assurer de l’associativité de  dans  grâce aux propriétés de  

Ce qui nous permet de conclure que  est un groupe commutatif. 

5. Un corps est un anneau dont tous les éléments, hors l’élément neutre de la première opération, sont 
inversibles. On a vérifié cela dans les parties précédentes, excepté la distributivité de  sur . 

Soient , 

 

 

 

 

 

Ce qui conforme la distributivité. 

Et finalement  est un corps commutatif. 

Im (z) G ⊂ ℝ × ℂ
(0,0) ∈ G (Im (−z), − z) = − (Im (z), z)

z z′￼ ℂ
(Im (z), z) * (Im (z′￼), z′￼) = (Im (z) + Im (z′￼), z + z′￼) = (Im (z + z′￼), z + z′￼) ∈ G

G (ℝ × ℂ, * )

1 (ℂ*, × ) ψ (1) = (0,1) (ℝ × ℂ, T )
∀(z, z′￼) ∈ ℂ2, ψ (z z′￼) = (Im (z z′￼), z z′￼)

z z′￼= (Re (z) + i Im (z)) (Re (z′￼) + i Im (z′￼))
= Re (z) Re (z′￼) − Im (z) Im (z′￼) + i (Re (z) Im (z′￼) + Re (z′￼) Im (z))

ψ (z z′￼) = (Re (z) Im (z′￼) + Re (z′￼) Im (z), z z′￼) = (Im (z), z) T (Im (z′￼), z′￼) = ψ (z) T ψ (z′￼)

ψ (ℂ*, × ) (ℝ × ℂ, T )

G − {0,0} (Im (z), z) (Im ( 1
z ),

1
z ) = −Im

z

z 2 ,
1
z

T G − {0,0}

T G − {0,0} ψ

(G − {0,0}, T)

T *
(z1, z2, z3) ∈ ℂ3

(Im (z1), z1) T ((Im (z2), z2) * (Im (z3), z3)) = (Im (z1), z1) T (Im (z2) + Im (z3), z2 + z3)
= (Im (z1) Re (z2 + z3) + (Im (z2) + Im (z3)) Re (z1), z1 (z2 + z3))
= (Im (z1) Re (z2) + Im (z1) Re (z3) + Im (z2) Re (z1) + Im (z3) Re (z1), z1z2 + z1z3)
= (Im (z1) Re (z2) + Im (z2) Re (z1) + Im (z1) Re (z3) + Im (z3) Re (z1), z1z2 + z1z3)
= ((Im (z1), z1) * (Im (z2), z2)) T ((Im (z1), z1) * (Im (z3), z3))

(G, * ,T )
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Exercice 4 
1.
a. Comme  et  sont tous 2 premiers, ils sont premiers entre eux ou égaux. 
Mais comme  divise , ils ne peuvent être égaux. 

Donc  et  sont premiers entre eux. 
 
b. On peut donc utiliser le petit théorème de Fermat qui nous indique que : 

Comme  

c.  correspond à la sommes des éléments d’une suite géométrique et donc : 

 

 
Ce que l’on peut réécrire, . 

Cela nous donne :  

Et comme  divise , on conclut que  

2.
a. On a cette fois  et donc, d’après le théorème de Bezout : 

 ou  

On peut donc écrire : 
 

 
Et en utilisant les résultats de la question 1 :  et  

Ce qui nous donne donc   

b. En utilisant le résultat précédente, on peut écrire : 
Comme  et donc  

 

Et finalement  

3. On vient de voir que si  et  sont premiers entre eux, . 
Mais par hypothèse,  divise  ou . 

Il est donc impossible que  et  soient premiers entre eux ! 
 
Et comme  est premier, il divise . 

Ce qui se traduit par  

p q
q S

p q

p ∧ q = 1, pq−1 ≡ 1 [q]
S

S =
1 − pp

1 − p
=

pp − 1
p − 1

pp − 1 = (p − 1) S

pp = (p − 1) S + 1

q S pp ≡ 1 [q]

p ∧ q − 1 = 1
∃(a , b) ∈ ℤ2, ap + b (q − 1) = 1 ap = 1 − b (q − 1)

pap = p1−b(q − 1) = p × p−b(q − 1) ⇔ (pp)a = p (pq−1)b

pp ≡ 1 [q] pq−1 ≡ 1 [q]
p ≡ 1 [q]

p ≡ 1 [q], ∀k ∈ ℕ, pk ≡ 1 [q]
S ≡ 1 + 1 + 1 + . . . + 1 [q] ≡ p [q]

S ≡ 1 [q]
p q − 1 S ≡ 1 [q]

q S S ≡ 0 [q]
p q − 1

p q − 1

p ≡ 1 [q]
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