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Exercice 1 
1. Pour ,  qui est bien un nombre premier, donc élément de  
Pour ,  qui est également un nombre premier. 

Donc  a au moins 2 éléments,  et . 

2.
a.  et  sont les plus petits éléments de , puisqu’ils ont été obtenus à partir des premiers éléments de 

. 
 
On a donc  

Et donc  
 
b. Par construction,  est pair. Ainsi  est impair. 

Ce qui signifie bien que  n’est pas divisible par . 

 
Puisque  est impair, ses facteurs premiers le sont forcément également. 

Ainsi, les facteurs premiers de  sont forcément de la forme  ou ,  

Remarque : pour le vérifier, il suffit d’étudier la forme des nombres dans la table des , donc 
 

c. Supposons par l’absurde que  ne comportent que des facteurs premiers de la forme  
 
En développant le produit de ces facteurs, on obtient forcément un nombre de la forme . 

Ainsi,  possède au moins un facteur premier de la forme . 

3. Considérons donc  un facteur premier de  de la forme  
Ainsi . 

De plus, par définition de , on a . 
En reprenant la définition de , on peut écrire  

D’après le théorème de Gauss, cela implique que , ce qui est absurde car  ! 
 
On conclut donc que l’hypothèse que  soit fini est absurde. 

Ou autrement, l’ensemble des nombres premiers de la forme  est infini. 

n = 1 4n − 1 = 3 E
n = 2 4n − 1 = 7

E 3 7

3 7 E
ℕ*

P ⩾ 21

X ⩾ 83

4P X = 4P − 1

X 2

X

X 4n − 1 4n + 1 n ∈ ℕ*

4
4n + k , k ∈ {0; 1; 2; 3}

X 4n + 1, n ∈ ℕ*

4N + 1

X 4n − 1, n ∈ ℕ*

p X 4n − 1, n ∈ ℕ*
p ∣ X

P p ∣ P
X p ∣ 4P − 1

p ∣ 1 p ⩾ 3

E

4n − 1, n ∈ ℕ*
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Exercice 2 
1. Voici la figure des 4 points construits : 

2. Soit  et  

Procédons par étape pour trouver les coordonnées des points : 
Application de  

 

Application de  

 

Et donc  

Application de  

 

D’où  

Application de  

 

Et donc  

3. Les points fixes de  sont les points tels que  

Ou  
 

Ce qui donne le système  

On va considérer , sinon le seul point fixe est O. 

t ∈ ℝ OM = x i + y j , (x , y) ∈ ℝ2

f
OM1 = tOM = t x i + t y j

g
A M2 = t A M1 = t ((t x + 1) i + t y j ) = (t2x + t) i + t2y j

OM2 = (t2x + t − 1) i + t2y j

h
BM3 = tBM2 = t ((t2x + t − 1) i + (t2y − 1) j ) = (t3x + t2 − t) i + (t3y − t) j

OM3 = (t3x + t2 − t) i + (t3y − t + 1) j

f
OM4 = tOM3 = t ((t3x + t2 − t) i + (t3y − t + 1) j ) = (t4x + t3 − t2) i + (t4y − t2 + t) j

OM4 = (t4x + t3 − t2) i + (t4y − t2 + t) j

φt M4 = M

(t4x + t3 − t2) i + (t4y − t2 + t) j = x i + y j

{t4x + t3 − t2 = x
t4y − t2 + t = y

t ≠ 0
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Regardons chacune des équations séparément. Commençons par  : 
 

Considérons également , cas dans lequel tous les points sont fixes. 

Or  
Et  

Donc  

Et finalement  

Étudions maintenant , toujours avec  et  : 
 

 

De la même façon que ci-dessus, on trouve  

Pour  et ,  possède un point fixe  

 est alors une homothétie de centre  et de rapport . 

x
t4x + t3 − t2 = x ⇔ x (1 − t4) = t3 − t2

t ≠ 1

t3 − t2 = t2 (t − 1)
1 − t4 = (1 − t2) (1 + t2) = (1 − t) (1 + t) (1 + t2)

x (1 − t4) = t3 − t2 ⇒ x =
t2 (t − 1)

(1 − t) (1 + t) (1 + t2)

x =
−t2

(1 + t) (1 + t2)
y t ≠ 0 t ≠ 1

t4y − t2 + t = y ⇔ y (t4 − 1) = t2 − t

y =
t (t − 1)

(t − 1) (t + 1) (t2 + 1)
=

t
(t + 1) (t2 + 1)

t ≠ 0 t ≠ 1 φt Ω ( −t2

(1 + t) (1 + t2)
;

t
(t + 1) (t2 + 1) )

φt Ω t4
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Problème 
Partie A 
1. Soit . 

On a  

On cherche donc  

 

Par identification, on doit trouver  

Ce qui donne finalement  

On peut écrire  

 

Par téléscopage, on trouve . 

Et donc, on confirme que  

2. Pour étudier les variations de , nous allons calculer  : 
 

 

Et donc  est croissante. 

Comparons maintenant  et  : 

Pour chaque terme de la somme (à part le 1er qui est  pour les 2) on a  

Et donc  

 
Comme de plus . 

On conclut finalement que  est majorée. 

Partie B 
1.

a.  

Pour  

 

n ∈ ℕ′￼
A

n − 1
+

B
n

=
An + B (n − 1)

n (n − 1)
=

(A + B) n − B
n (n − 1)

(A + B) n − B
n (n − 1)

=
1

n (n − 1)

{A + B = 1
B = − 1

1
n − 1

−
1
n

=
1

n (n − 1)

vn = 1 +
n

∑
k=2

1
k (k − 1)

= 1 +
n

∑
k=2

( 1
n − 1

−
1
n )

vn = 1 + 1 −
1
n

∀n ∈ ℕ′￼, vn = 2 −
1
n

u un+1 − un

un+1 − un =
n+1

∑
k=1

1
k2

−
n

∑
k=1

1
k2

=
1

(n + 1)2 ⩾ 0

u

vn un

1
1

k (k − 1)
⩾

1
k2

∀n ∈ ℕ′￼, un ⩽ vn

∀n ∈ ℕ′￼, vn ⩽ 2

u

Cn (t) + iSn (t) =
n

∑
k=1

cos (k t) + i
n

∑
k=1

sin (k t) =
n

∑
k=1

cos (k t) + i sin (k t) =
n

∑
k=1

eikt

t ≠ 0

Cn (t) + iSn (t) = eit
n−1

∑
k=0

eikt = eit
n−1

∑
k=0

(eit)k = eit 1 − eint

1 − eit

©antoine.remond.maths@gmail.com

mailto:antoine.remond.maths@gmail.com


Attention : la formule rappelée dans l’énoncé ne fonctionne que si la somme part de , ce qui n’était pas 
notre cas. Ici, il faut factoriser par le premier terme pour pouvoir appliquer la formule ensuite. 

Donc  

Rappel : on reconnaît ici la formule . Il y a une formule pour  que je te laisse 

retrouver si besoin. 

On trouve donc (je passe une étape de simplification par  au numérateur et au dénominateur et le 
regroupement des exponentielles) : 

 

Et donc pour ,  et  

Remarque : je n’insiste par pour , tous les  valent  et les  valent  

b. En repartant de l’expression ci-dessus, on peut écrire : 

 

 étant la partie réelle de cette expression, on trouve bien (en tenant compte de  évoqué ci-
dessus) 

On a donc  et  

c. Quand  et par ailleurs,  et  

Et donc  

Ainsi, l’application  est continue sur  

2.  

q0

Cn (t) + iSn (t) = eit 1 − eint

1 − eit
= eit

ei n
2 t (e−i n

2 t − ei n
2 t)

ei t
2 (e−i t

2 − ei t
2 )

sin (α) =
eiα − e−iα

2i
cos (α)

−2i

Cn (t) + iSn (t) = ei n + 1
2 t

sin ( n
2 t)

sin ( t
2 )

t ≠ 0 Cn (t) + iSn (t) = ei n + 1
2 t

sin ( n
2 t)

sin ( t
2 )

Cn (0) + iSn (O) = n

t = 0 cos (k t) 1 sin (k t) 0

Cn (t) + iSn (t) =
sin ( n

2 t)
sin ( t

2 ) (cos ( n + 1
2

t) + i sin ( n + 1
2

t))
Cn (t) Cn (0)

∀t ∈ ]0; π], Cn (t) =
sin ( n

2 t) cos ( n + 1
2 t)

sin ( t
2 )

Cn (0) = n

t → 0, cos ( n + 1
2

t) → 1 sin ( n
2

t) ∼
n
2

t sin ( t
2 ) ∼

t
2

lim
t→0

sin ( n
2 t) cos ( n + 1

2 t)
sin ( t

2 )
= n

Cn [0; π]

∀t ∈ ]0; π], 1 + 2Cn (t) = 1 +
2 sin ( n

2 t) cos ( n + 1
2 t)

sin ( t
2 )

=
sin ( t

2 ) + 2 sin ( n
2 t) cos ( n + 1

2 t)
sin ( t

2 )
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Or  

Et  

 

Donc  

Et finalement on a bien  

En utilisant la même équivalence en  que pour la question précédente, on obtient que 

 

Et donc, on peut prolonger  une fonction  continue sur  en posant  

3. Nous allons procéder à une intégration par parties (et même 2, le but étant de réduire le degré du 
polynôme) 

 

 (l’expression dans le crochet valant  en  et ) 

Et 

 

Donc  

Par définition de  et avec le résultat précédent, on a :  

Et par linéarité de l’intégrale (qui ne pose pas de souci pour une somme finie) : 

 

Et donc, par définition de ,  

 

4.  

Et donc  

sin ( t
2 ) = sin ( n + 1

2
t) cos ( n

2
t) − cos ( n + 1

2
t) sin ( n

2
t)

sin ( 2n + 1
2

t) = cos ( n + 1
2

t) sin ( n
2

t) + sin ( n + 1
2

t) cos ( n
2

t)
sin ( 2n + 1

2
t) = sin ( t

2 ) + 2 sin ( n
2

t) cos ( n + 1
2

t)
∀t ∈ ]0; π], 1 + 2Cn (t) =

sin ( 2n + 1
2 t)

sin ( t
2 )

0

lim
t→0

sin ( 2n + 1
2 t)

sin ( t
2 )

= 2n + 1

1 + 2Cn gn [0; π] gn (0) = 2n + 1

∫
π

0 ( t2

2π
− t) cos (nt) dt =

1
n [( t2

2π
− t) sin (nt)]

π

0

−
1
n ∫

π

0 ( t
π

− 1) sin (nt) dt

= −
1
n ∫

π

0 ( t
π

− 1) sin (nt) dt 0 0 π

−
1
n ∫

π

0 ( t
π

− 1) sin (nt) dt =
1
n2 [( t

π
− 1) cos (nt)]

π

0
−

1
n2 ∫

π

0

1
π

cos (nt) dt =
1
n2

−
1

π n3 [sin (nt)]π
0

=
1
n2

∫
π

0 ( t2

2π
− t) cos (nt) dt =

1
n2

u un =
n

∑
k=1

1
k2

=
n

∑
k=1

∫
π

0 ( t2

2π
− t) cos (k t) dt

un = ∫
π

0 ( t2

2π
− t)

n

∑
k=1

cos (k t) dt

Cn un = ∫
π

0 ( t2

2π
− t) Cn (t) dt

1
2 ∫

π

0
t −

t2

2π
dt =

1
2 [ t2

2
−

t3

6π ]
π

0

=
1
2 ( π2

2
−

π3

6π ) =
π2

4
−

π2

12
=

2π2

12
1
2 ∫

π

0
t −

t2

2π
dt =

π2

6
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D’après la question précédente, on peut écrire  

Donc  

 

Et finalement,  

Partie C 

1.  

Pour vérifier la continuité en , nous allons une nouvelle fois utiliser l’équivalence en  

Et donc , ce qui confirme que  

Ainsi  est continue sur  

Sur un intervalle fermé, une fonction continue est bornée et atteint ses bornes, ce qui nous assure 
l’existence d’un  tel que  

De plus,  et donc 

 

Finalement, il existe un  tel que  

2. On considère  
a. En utilisant l’inégalité triangulaire, on a, pour tout  de  : 

 

Et  

Et donc  

−un = ∫
π

0 (t −
t2

2π ) Cn (t) dt

π2

6
− un =

1
2 ∫

π

0
t −

t2

2π
dt + ∫

π

0 (t −
t2

2π ) Cn (t) dt =
1
2 ∫

π

0
t −

t2

2π
+ 2 (t −

t2

2π ) Cn (t) dt

=
1
2 ∫

π

0 (t −
t2

2π ) (1 + 2Cn (t)) dt

π2

6
− un =

1
2 ∫

π

0 (t −
t2

2π ) gn (t) dt

∀t ∈ ]0; π], f (t) =
t − t2

2π

sin ( t
2 )

0 sin ( t
2 ) ∼

t
2

f (t) ∼
t − t2

2π
t
2

= 2 −
t
π

lim
t→0

f (t) = 2

f [0; π]

M ⩾ 2 ∀t ∈ [0; π], f (t) ⩽ M

∀t ∈ [0; π], sin ( t
2 ) ⩽

t
2

∀t ∈ [0; π], f (t) ⩾
t − t2

2π
t
2

= 2 −
t
π

⩾ 2 −
π
π

= 1

M ∈ ℝ ∀t ∈ [0; π], 0 ⩽ f (t) ⩽ M

0 < α < π
n ℕ

∫
α

0
f (t) sin ( 2n + 1

2
t) dt ⩽ ∫

α

0
f (t) sin ( 2n + 1

2
t) dt

∀t ∈ [0; α], f (t) sin ( 2n + 1
2

t) = f (t) sin ( 2n + 1
2

t) ⩽ M

∫
α

0
f (t) sin ( 2n + 1

2
t) dt ⩽ ∫

α

0
Mdt = αM
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On conclut donc  

b.  est dérivable sur  comme quotient de fonctions qui le sont et dont le dénominateur ne s’annule 
pas sur le segment considéré. 

 

Pas besoin d’aller plus loin, tous les membres du numérateur sont continus et le dénominateur l’est 
également et ne s’annule pas. 
On va donc pouvoir appliquer le théorème des bornes atteintes. 

Ceci nous assure qu’il existe un réel  tel que  

c.  

 

 

Par la même méthode que dans la question a, on peut borner  et affirmer 

qu’il existe un réel  tel que : 

 

Et donc  

Remarque : je me suis permis cette rédaction abrégée, car le principe est vraiment le même que dans la 
question précédente, mais il faut introduire d’autres bornes car  n’est pas minorée par  contrairement à . 
Ça alourdirait une rédaction d’un problème qui est déjà bien assez long. Si tu en es là, je ne pas qu’on 
puisse t’en tenir rigueur. 

Ceci permet bien de conclure que  

3. En utilisant les 2 résultats principaux de la question 2 et à partir de la relation de Chasles, on obtient : 

 

 

Et donc, en faisant tendre  vers , on obtient que  

∀n ∈ ℕ, ∫
α

0
f (t) sin ( 2n + 1

2
t) dt ⩽ αM

f [α; π]

∀t ∈ [α; π], f ′￼(t) =
(1 − t

π ) sin ( t
2 ) − 1

2 cos ( t
2 ) (t − t2

2π )
sin2 ( t

2 )

M′￼ ∀t ∈ [α; π], f ′￼(t) ⩽ M′￼

In = ∫
π

α
f (t) sin ( 2n + 1

2
t) dt =

−2
2n + 1 [f (t) cos ( 2n + 1

2
t)]

π

α
+

2
2n + 1 ∫

π

α
f ′￼(t) cos ( 2n + 1

2
t) dt

=
2

2n + 1
f (α) cos ( 2n + 1

2
α) +

2
2n + 1 ∫

π

α
f ′￼(t) cos ( 2n + 1

2
t) dt

=
2

2n + 1 (f (α) cos ( 2n + 1
2

α) + ∫
π

α
f ′￼(t) cos ( 2n + 1

2
t) dt)

∫
π

α
f ′￼(t) cos ( 2n + 1

2
t) dt

K

f (α) cos ( 2n + 1
2

α) + ∫
π

α
f ′￼(t) cos ( 2n + 1

2
t) dt ⩽ K

In ⩽
2

2n + 1
K

f ′￼ 0 f

lim
n→+∞

In = 0

∀α ∈ ]0; π[, ∀n ∈ ℕ, ∫
π

0
f (t) sin ( 2n + 1

2
t) dt = ∫

α

0
f (t) sin ( 2n + 1

2
t) dt + ∫

π

α
f (t) sin ( 2n + 1

2
t) dt

⩽ ∫
α

0
f (t) sin ( 2n + 1

2
t) dt + ∫

π

α
f (t) sin ( 2n + 1

2
t) dt ⩽ αM + In

α 0 lim
n→+∞ ∫

π

0
f (t) sin ( 2n + 1

2
t) dt = 0
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De plus, on peut écrire : 

 

 

Et donc  

Ce qui nous donne  

Comme d’après la question B.4 on a , on déduit que 

 

Ce qu’on réécrit en 

∀t ∈ [0; π], f (t) sin ( 2n + 1
2

t) =
t − t2

2π

sin ( t
2 )

sin ( 2n + 1
2

t) = (t −
t2

2π )
sin ( 2n + 1

2 t)
sin ( t

2 )
= (t −

t2

2π ) gn (t)

∫
π

0
f (t) sin ( 2n + 1

2
t) dt = ∫

π

0 (t −
t2

2π ) gn (t) dt

lim
n→+∞ ∫

π

0 (t −
t2

2π ) gn (t) dt = 0

π2

6
− un =

1
2 ∫

π

0 (t −
t2

2π ) gn (t) dt

lim
n→+∞

π2

6
− un = 0

lim
n→+∞

un =
π2

6
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