
Exercice 248 : 
Le produit de Wallis (cet exercice est un complément des exemples donnés dans le poly, qu’il faut donc lire 
avant de le faire ! En complément, n’hésitez pas à aller voir le post concernant les intégrales de Wallis posté 
en début de blog, il reprend certains résultats exposés dans le poly.) 

On pose pour  

a) Montrer pour  dans ,  

b) Déduire de l’exemple 3 du poly (ie. ) que  

c) Déterminer la limite en  de  

d) Conclure que  

Puis que  et  

Solution : 

a)  

Comme . 

Ainsi pour ,  
 
b) La question précédente nous indique . 

Et avec la relation de récurrence donnée :   

 

c) Des 2 questions précédentes, on encadre : . 

Et donc  

d) Pour cette question également, il faut utiliser les résultats donnés dans le poly, qui nous donne : 

 

 

Ce qui donne  

Et finalement  

n ∈ ℕ, Wn = ∫
π
2

0
cosn (t) dt

n ℕ Wn+1 ⩽ Wn

Wn+2 =
n + 1
n + 2

Wn
n + 1
n + 2

Wn ⩽ Wn+1

+∞
Wn+1

Wn

lim
k→+∞ ( 2 × 4 × 6 × . . . × 2k
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2

×
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π
2
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1

4k2 ) =
2
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n→+∞

n

∏
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1 −
1

(2k + 1)2 =
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Wn+1 − Wn = ∫
π
2

0
cosn−1 (t) − cosn (t) dt = ∫

π
2

0
cosn (t) (cos (t) − 1) dt

∀t ∈ [0,
π
2 ], 0 ⩽ cos (t) ⩽ 1, Wn+1 − Wn ⩽ 0

n ∈ ℕ Wn+1 ⩽ Wn

Wn+2 ⩽ Wn+1

n + 1
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W2k
= (

2k × (2k − 2) × . . . × 4 × 2

(2k + 1) × (2k − 1) × . . . × 3 ) ×
2
π (

2k × (2k − 2) × . . . × 4 × 2

(2k − 1) × (2k − 3) × . . . × 3 )

( 2 × 4 × 6 × . . . × 2k
3 × 5 × 7 × . . . × (2k − 1) )

2

×
1

2k + 1
=

π
2

×
W2k+1
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lim
k→+∞ ( 2 × 4 × 6 × . . . × 2k
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2

×
1

2k + 1
=

π
2
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Remarquons que  ce qui nous permet de reconnaître l’inverse 

du quotient présent dans la question précédente : 

D’où :  

Observons cette fois :  

Cette fois, le produit contient  en « trop », mais il « manque » un  au début du produit par rapport au 

produit précédent. 

Ce qui donne  

Exercice 249 : 
Comportement asymptotique de  

Déduire de l’exercice précédent la relation  

Solution : 
Rappel :  

En reprenant les formules données par le poly : 

 

 

Ce qui donne :  

On trouve avec la même astuce :  

Ceci permet d’écrire :  

En prenant l’inverse :  

1 −
1

4k2
=

4k2 − 1
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∏
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2

×
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=
π
2

×
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Et en prenant la racine, puis passage à la limite :  lim
n→+∞

n
(2n

n )
4n

=
1

π
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