Exercice 250 :

Je passe cet exercice, dont le but est de reprendre la démonstration présentée juste avant dans le poly.
L'idée principale est méme indiquée juste avant I'exercice !

Exercice 251 :

Irrationalité de e

n
1
Pourn € N, on pose u,, = ZF
k=0

e
a) Pourn € N, justifier 'encadrement 0 < € — u,, < ————
(n+1)!
b) On raisonne par I'absurde et on suppose e rationnel. On peut donc écrire e = B, (p, q) e N
q
e
Vérifier que pour n = g, le réel n!(e - un) est un entier appartenant a ] 0, 1 et aboutir a une
n
contradiction.
Solution :
a) On utilise la formule proposée dans l'introduction du paragraphe et :
n n X n n 1 n
X X —t 1 1—1¢
Vx €R, e* = Z— +J ue’dtetdonce = Z— +J uetdt
k! n! k! n!
k=0 0 k=0 0
1 n
1—1¢
Ainsi, e — u, = J uetdt.
o n!

Comme Vi € [0,1], (1 =1)" > 0 (et méme strictement supérieur sauf en 0), on a immédiatement
O<e—u,

De plus, Vt € [0,1], e’ < e (et méme strictement inférieur sauf en 1),

1
1 n 1 n+l
1 -1 11—t
Jue‘dt<ij' (1—pydr == | 420 = °
o n! n'Jy n! n+1 . (n+1)!
On conclut donc VneN,O<e—un<L
(n+1)!

b) Comme proposé dans I'énoncé, on suppose ¢ = B, (p, q) e N™2.
q

Soitn = ¢, considérons n!(e - un) :
e =) e Netn! 'y N, donc 7! N
n.e—;pe e”-”n—”-ZF—E , oncn.(e—un)e

k=0 """
e

Mais, d’aprés la question précédente, 0 < n!(e - un) < , mais on ne peut pas avoir

n+1

Vn €N, e N!

n+1

Finalement, e est irrationnel.

Exercice 252 :

Formule de Taylor avec reste intégral
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Soit f une fonction de R dans R admettant des dérivées de tous ordres. Montrer que pour n dans N, on a :

Vx €R, f()_zf |0 ’<+J (xn D" s (1) gy
.

Solution :
Nous allons procéder par récurrence.
Pourn =0:

2 (k)
SO i

. +J (xn £ (1) 4y _f(O)+J frdt=f0)+fx)—f0)=f(x
. 0 '

k=0

Supposons la propriété vraie au rang n et étudions le rang n + 1 :
Utilisons une intégration par parties :

()C ) (n+1) d (x—t)n-H (n+1) ' Jx( _Z)n+1 (n+2) d
L T T OaE Y ey S
- ((xle),f‘"“)( 0) + r—(f_ )n;] f2 @) dt

0

En incluant cela dans la formule du rang n, on trouve

OO & =0" £l )(o) i @ -0
2% X+L T A= Z e (0>+me O

:rilf(k) (0)xk+J M]ﬂ(nﬂ)(t)dt
b k! g (m+1)!

f(n+2) (t) dt

Ce qui confirme bien que f (x) =

n+l (k) X o il
Zf (O)Xk-'-J (x—1)
k1 o e+ D)

Et ainsi on valide I'hérédité de la propriété.

Finalement, Vn € N, Vx € R, f (x) = Zf |© k+J =1 D) dt

o n!

Remarque : on voit bien ici toute la puissance du raisonnement par récurrence, qui permet avec des
techniques simples de démontrer un résultat tres puissant. Evidemment, cela présuppose de connaitre le
résultat, ce qui n’est souvent pas trivial !

Exercice 253 :

Une suite qui converge vers In (2)

Soit n dans N
L ‘o 1 (= 1) ¢!
a) Montrer que, pour YVt € R\{—1}, 2 (-t = +
=0 1+1¢ 1+1¢
n (_ k 1 n+l
b) En déduire que 2 =In2)+ (- 1)”J dt
=0 +1 0 1+1¢
1 tn—i—l 1
c) Montrer que 0 < I dt <
o L+t n+2
. (-1
d) Conclure lim =In(2)
n—+oo k=0

©antoine.remond.maths@amail.com



mailto:antoine.remond.maths@gmail.com

n (_1)k )Ck+1
e) Plus généralement, montrer que, si0 < x < 1, alors lim 2 ———=In(1+x)

n—>+ook:0 k+ 1

Donner une estimation de la « vitesse de convergence », c’est a dire de I'erreur

n (_1)kxk+1
In(1+x) — Z— .
P k+1

Solution :
a) On reconnait la somme des termes d’une suite géométrique et donc :

n 1 = (=t n+1 14+ (=1 ntn+1
Vi € R\{-1}, Z(—l)ktkz o _1+CD
o0 141t 141

1 _1ntn+1
+( )

Ce qui se réécrit: Vi € R\{—1}, Dk ek =
| (=10, 2= 1+1 1+1

k=0

b) Sur une somme finie, on peut intégrer termes a termes, il N’y a pas de probléme de convergence sur

[0.1]

1 n n 1 1 1 1(—1)”tn+1
J Z(—l)kt" dt=ZJ (=) tkdt =J —dt+J A —;
o\ = 1+ o 1+t

k=0"0 0 !
1
n . ZkH | { . 1 .n+l p
D'ou -1 =|In(l+8)| + (1" t
2|V [()]0(>J0 t
k=0 0
n (_1)k 1 n+l
Et finalement Z =In(2) + (—1)"J dt
k=0
1 tn+1
c) La fonction intégrée est positive sur [0,1], donc on obtient immédiatement 0 < J T tdt
0

1 LS.
Vt € [O,l], T+ <1etdonc1 tét

1 tn+l 1 tn+2 1
Ceci entraine J dt < J e = = .
o L+1 0 n+2 n+2
0
1 l‘"+]
Ce qui permet de conclure 0 < J dt <
o 1+1 n+?2

I _n+l
d) De la question précédente, par le théoréme des gendarmes, on tire  lim J dt =0
n—+co J 1+1¢

1 tn+1
Etdonc lim (—1)"J dt =0
n—+oo 0 1+1¢

n (_ 1)k
Ainsi, lim Z = In(2)
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e) On peut reproduire le raisonnement précédent en intégrant sur [O,x] plutdt que [O,l], tant que
0 < x £ 1.Six > 1, on ne peut plus majorer I'intégrale « résiduelle ».

n (_1)k xk+]

Finalementsi0 < x <1, lim ————=In(1 +x)
n—+o0o0 k+1
k=0
k _k+1
(-1"x 1

La convergence de |In(1 + x) — Z ——— | esten —, donc trés lente.

= k+1 n

Exercice 254 .

Série de Grégory-Leibniz pour

T Jtan(x) dt
IR =X
221 ), 1+¢7

T U dr
En particulier, — =
4 )y 1417

a) Montrer que Vx €

b) Pour n dans N, établir — = Z + (- 1)n+1J dt
4 k+1 0 14172

c) Conclure lim

n—+o0o 2k + 1

= 2
k=0 4

Solution :

dt
a) Effectuons un changement de variable en posant u = arctan (¢) et d’'ot du = T
t
tan(x) dt X +
CequidonneJ > =J du =x
0 1+1¢ 0
T tan() gy
Etdonc Vx € |——,—|, =
2721 ), 1+2

Remarque : 'ensemble de départ proposé dans I'énoncé nous assure que notre changement de variable ne
pose pas de souci particulier et ne nécessite pas de « km » résiduel.

Rappel : formule du changement de variable. Soit ¢ une fonction €' sur [a, b] et soit f une fonction
¢(b) b

continue sur ¢ ([a, b] ) On a alors I'égalité [ f@dt = J fep X)p' (x)dx
a

@(a)

b4 T Udr
On sait de plus que tan [ — | = 1, ce qui confirme |[— =
4 4 )y 1+7

b) Notons que, comme somme des termes d’une suite géométrique, on a :

2(n+1)
Z( D= —— 4 (D)™
1+
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On peut intégrer terme a terme sur [0,1], et ainsi :

n rl rl 1 1
Z (- DF g = ~dt + J (=1 ——
k=0 " 0 Jo 1 + t 0
-1 | k
dt n -1
or, =t | (=Dfe*dr = =1)
Jo1+22 4 ], 2k +1
P n -1 k 1 t2n+2
Finalement, on obtient bien — = 2 D + (—1)”+1J —dt
2k +1 o 1+122
k=0
2n+2 1 t2n+2
c) Vte [0,1], < *"*2 et donc J 22t =
1+ o 1+12 2n+3
1 t2n+2 1 t2n+2
Et de fagon évidente, J dt > 0,ona lim (—1)"+1J —dt =0
o L+ 12 n—+oo 0 1+
o (DY
Ce qui conclut I'exercice et lim = —
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