
Exercice 250 : 
Je passe cet exercice, dont le but est de reprendre la démonstration présentée juste avant dans le poly. 
L’idée principale est même indiquée juste avant l’exercice ! 

Exercice 251 : 
Irrationalité de  

Pour , on pose  

a) Pour , justifier l’encadrement  

b) On raisonne par l’absurde et on suppose  rationnel. On peut donc écrire  

Vérifier que pour , le réel  est un entier appartenant à  et aboutir à une 

contradiction. 

Solution : 
a) On utilise la formule proposée dans l’introduction du paragraphe et : 

 et donc  

Ainsi, . 

Comme  (et même strictement supérieur sauf en ), on a immédiatement 
. 

De plus,  (et même strictement inférieur sauf en ), 

 

On conclut donc  

b) Comme proposé dans l’énoncé, on suppose . 

Soit , considérons  : 

 et , donc  

Mais, d’après la question précédente, , mais on ne peut pas avoir 

 ! 

Finalement,  est irrationnel. 

Exercice 252 : 
Formule de Taylor avec reste intégral 
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Soit  une fonction de  dans  admettant des dérivées de tous ordres. Montrer que pour  dans , on a : 

 

Solution : 
Nous allons procéder par récurrence. 
Pour  : 

 

Supposons la propriété vraie au rang  et étudions le rang  : 
Utilisons une intégration par parties : 

 

 

En incluant cela dans la formule du rang , on trouve : 

 

 

Ce qui confirme bien que  

Et ainsi on valide l’hérédité de la propriété. 

Finalement,  

Remarque : on voit bien ici toute la puissance du raisonnement par récurrence, qui permet avec des 
techniques simples de démontrer un résultat très puissant. Evidemment, cela présuppose de connaitre le 
résultat, ce qui n’est souvent pas trivial ! 

Exercice 253 : 
Une suite qui converge vers  

Soit  dans  

a) Montrer que, pour  

b) En déduire que  

c) Montrer que  

d) Conclure  
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e) Plus généralement, montrer que, si , alors  

Donner une estimation de la « vitesse de convergence », c’est à dire de l’erreur 

. 

Solution : 
a) On reconnait la somme des termes d’une suite géométrique et donc : 

 

Ce qui se réécrit :  

b) Sur une somme finie, on peut intégrer termes à termes, il n’y a pas de problème de convergence sur 
 

 

 

D’où  

Et finalement  

c) La fonction intégrée est positive sur , donc on obtient immédiatement  

 et donc  

 

Ceci entraîne . 

Ce qui permet de conclure  

d) De la question précédente, par le théorème des gendarmes, on tire  
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Ainsi,  

0 ⩽ x ⩽ 1 lim
n→+∞

n

∑
k=0

(−1)k xk+1

k + 1
= ln (1 + x)

ln (1 + x) −
n

∑
k=0

(−1)k xk+1

k + 1

∀t ∈ ℝ\{−1},
n

∑
k=0

(−1)k tk =
1 − (−t)n+1

1 + t
=

1 + (−1)n tn+1

1 + t

∀t ∈ ℝ\{−1},
n

∑
k=0

(−1)k tk =
1

1 + t
+

(−1)n tn+1

1 + t

[0,1]

∫
1

0 (
n

∑
k=0

(−1)k tk) dt =
n

∑
k=0

∫
1

0
(−1)k tkdt = ∫

1

0

1
1 + t

dt + ∫
1

0

(−1)n tn+1

1 + t
dt

n

∑
k=0 [(−1)k tk+1

k + 1 ]
1

0

= [ln (1 + t)]1
0

+ (−1)n ∫
1

0

tn+1

1 + t
dt

n

∑
k=0

(−1)k

k + 1
= ln (2) + (−1)n ∫

1

0

tn+1

1 + t
dt

[0,1] 0 ⩽ ∫
1

0

tn+1

1 + t
dt

∀t ∈ [0,1],
1

1 + t
⩽ 1

tn+1

1 + t
⩽ tn+1

∫
1

0

tn+1

1 + t
dt ⩽ ∫

1

0
tn+1dt = [ tn+2

n + 2 ]
1

0

=
1

n + 2

0 ⩽ ∫
1

0

tn+1

1 + t
dt ⩽

1
n + 2

lim
n→+∞ ∫

1

0

tn+1

1 + t
dt = 0

lim
n→+∞

(−1)n ∫
1

0

tn+1

1 + t
dt = 0

lim
n→+∞

n

∑
k=0

(−1)k

k + 1
= ln (2)

©antoine.remond.maths@gmail.com

mailto:antoine.remond.maths@gmail.com


e) On peut reproduire le raisonnement précédent en intégrant sur  plutôt que , tant que 
. Si , on ne peut plus majorer l’intégrale « résiduelle ». 

Finalement si ,  

La convergence de  est en , donc très lente. 

Exercice 254 : 
Série de Grégory-Leibniz pour  

a) Montrer que  

En particulier,  

b) Pour  dans , établir  

c) Conclure  

Solution : 
a) Effectuons un changement de variable en posant  et d’où  

Ce qui donne  

Et donc  

Remarque : l’ensemble de départ proposé dans l’énoncé nous assure que notre changement de variable ne 
pose pas de souci particulier et ne nécessite pas de «   » résiduel. 

Rappel : formule du changement de variable. Soit  une fonction  sur  et soit  une fonction 

continue sur . On a alors l’égalité  

On sait de plus que , ce qui confirme   

b) Notons que, comme somme des termes d’une suite géométrique, on a : 
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On peut intégrer terme à terme sur , et ainsi : 

 

 

Or,  et  

Finalement, on obtient bien  

c)  et donc  

Et de façon évidente, , on a  

Ce qui conclut l’exercice et  
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