
Exercice 151 : 
Soit  une fonction de  dans  

a. On suppose que  est paire. Que dire de  ? 
b. Même question si  est impaire. 
c. Même question si  est périodique de période  

Solution : 
a. Par définition d’une fonction paire, on a  

Comme  est dérivable, on peut dériver cette égalité : 
 

Et donc si  est paire,  est impaire. 

Remarque : on vérifie sur une fonction paire bien connue, par exemple  

b. Nous allons utiliser le même raisonnement pour une fonction impaire : 
On a  
 
Et en dérivant :  ou  

Et cette fois si  est impaire,  est impaire. 

Remarque : de la même façon, vérifie avec la fonction identité par exemple ! 

c. On a cette fois  

On dérive à nouveau :  

On conclut que si  est périodique de période ,  l’est également avec la même période. 

Exercice 152 : 
a. Déterminer 2 réels  et  tels que :  

b. Pour  dans , calculer la dérivée -ième de  

Solution : 
a. Considérons . 

 

 
Par identification, on obtient immédiatement  et  

Et donc  

b. Pour cette question, nous utilisons le résultat de l’exercice 149 
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On trouve  

Ou finalement  

Exercice 153 : 
Si  est une fonction dérivable sur un intervalle  de  et à valeurs dans , on appelle dérivée 

logarithmique de  la fonction  

a. Soient  et  deux fonctions dérivables sur  et à valeurs dans . Exprimer la dérivée logarithmique de 
 en fonction de celles de  et . 

b. Généraliser la question précédente à un produit de  facteurs. 
c. Soient  dans ,  des nombres réels et  la fonction polynôme définie par 

 

Calculer la dérivée logarithmique de  sur les intervalles où elle est définie. 

Solution : 
a. Partons de la formule  
Comme les 2 fonctions sont à valeurs dans , on peut écrire la dérivée logarithmique de leur produit : 
 

 

Et donc la dérivée logarithmique du produit de 2 fonctions et la somme des dérivées logarithmiques. 

b. Posons  avec  

On a alors  

Remarque : si besoin on peut montrer ce résultat par récurrence à partir de la dérivée d’un produit. 
 

Et donc  

On peut donc généraliser le résultat précédent avec le produit de  fonctions  

 
c. Appliquons le résultat précédent à  
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