
Exercice 141 : 
Soit . Pour , on pose  et . 
Pour les questions a) et b), on suppose . 
a) On suppose que . Pour , exprimer  en fonction de  et . En déduire que  

converge. 
b) On note  et  les limites de  et . En considérant les suites  et , 

donner deux relations entre  et . 
c) Conclure que  converge si et seulement si  et que  converge si et seulement si 

. 

Solution : 
a) En utilisation les propriétés du cosinus, on peut écrire : 

 

Par hypothèse,  et donc :   

Comme par hypothèse,  converge, . 

Ainsi on a pour  : 

 

Ce qui permet de conclure que  converge. 

b) La question précédente nous donne déjà : . 

Partons maintenant de  : 
. 

 

Ce qui donne cette fois : . 

Finalement  et  

c) En utilisant les relations précédentes : 

, ce qui est impossible, sauf si  et ainsi . 

La réciproque est évidente, car pour ,  est constante égale à . 

Cependant, les calculs précédents reposent sur  ! On conclut donc que si ,  et 

 divergent. 

Il ne reste dans que les solutions triviales :  converge ssi  et  converge ssi 

. 
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Exercice 142 : 
a) Soit . Montrer qu’il existe exactement un entier naturel  tel que l’écriture décimale de  

comporte  chiffres et commence par un . 
b) Soit, pour ,  le nombre de  tels que l’écriture décimale de  commence 

par un . Déterminer la limite de la suite . 

Solution : 
a) Etudions les premiers rang de la propriété recherchée : 

 :  est bien le seul entier répondant à la contrainte (les puissances suivantes sont  
et ). 

 :  est bien le seul entier correspondant (les puissances suivantes sont  et ). 
Puis  :  

On peut regarder le comportement avec un petit programme Python : 
def power_of_2(n): 
	 for i in range(n): 
	 	 p=2**i 
	 	 p=str(p) 
	 	 if p[0] == '1': 
	 	 	 print(2**i, i) 

power_of_2(100) 

Si on formalise, on cherche à encadrer  entre  et  : 
On cherche donc : , ce qui est équivalent à 

 
 

Ou finalement  

D’après cet encadrement de type , on peut conclure à l’existence et l’unicité de  
b) La question précédente nous indique qu’à chaque fois que  commence par un , l’écriture décimale 

comporte un chiffre de plus. 

On a donc : . Ce qui donne, avec le même raisonnement que précédemment : 

 ou . 

En utilisant le théorème des gendarmes, on conclut :  

Exercice 143 : 
Déterminer la limite de  définie par :  

Solution : 
Les premiers termes de la suite : . 

On peut écrire pour  : . 
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De cette expression on déduit que si  converge vers une limite, cette limite . (En effet, si 

, ). 
Tous les termes considérés dans la définitions de  étant positifs,  

Considérons la différence . 

On s’intéresse à la limite, donc pour  « assez grand », on peut écrire 

 et . 

Donc  

 
On en tire que  est décroissante et minorée, donc convergente. 

D’après la remarque faite au début,  converge vers 1.
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