
Dans ce chapitre, sauf indication contraire, la fonction  fait référence à  

Exercice 214 : 
L’inégalité entre moyenne géométrique et moyenne harmonique 
Soient ,  des éléments de . La moyenne harmonique de  est le réel  tel 

que  soit la moyenne arithmétique de . En d’autres termes,  . 

En utilisant le théorème 7 à , montrer que  et qu’il y a égalité si et seulement si 

tous les  sont égaux. 

Solution : 
Par définition,  est donc la moyenne arithmétique des . 

Si on applique le théorème 7, on a l’inégalité :  

 
En passant à l’inverse, ce qui change le sens de l’inégalité, on trouve bien : 

  

En appliquant la deuxième partie du théorème 7 aux , on sait qu’il y a égalité si et seulement 

si tous les  sont égaux. 

Et donc, il y a égalité si et seulement si tous les  sont égaux. 

Exercice 215 : 
L’inégalité arithmético-géométrique, la preuve de Cauchy. 
Pour  dans , on se propose d’établir la propriété suivante, que l’on appelle  : pour tout -uplet 

 d’éléments de , on a  avec égalité si et seulement si tous les  sont 

égaux. La démonstration proposée dans cet exercice est due à Cauchy. 
On note  l’ensemble des  de  tels que  soit vraie. 
a) Montrer que  est vraie. 
b) Soit  dans . Montrer que si  est vraie, il en est de même pour . 
c) Soit  dans . Montrer que si  est vraie, il en est de même de . On pourra avec  des 

éléments de , poser . 

d) Conclure avec l’exercice 13 de 1.3. 

Solution : 
a) On considère  et  dans . 
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On sait que  (le cas d’égalité est trivial dans ce cas). 

On conclut donc que  et que  est vraie. 

b) On suppose par hypothèse que  est vraie. On sait également que  est vraie par la question 
précédente. 

On considère 2 -uplet  et  d’éléments de . 

On pose alors  et  

En utilisant , on trouve :  ou 

 

On utilise alors  pour majorer la partie droite de l’inégalité précédente : 

 

Et finalement, en réécrivant les 2 parties : , ce qu’on identifie bien à l’inégalité de . 

 
Le cas d’égalité se produit quand on a l’égalité pour  et , donc l’ensemble des  sont égaux. 

Donc si  est vraie, il en est de même pour . 

c) Supposons cette fois que  est vraie. 

Comme proposé par l’énoncé, considérons le -uplet  et écrivons  : 

 

Or  

On a donc , ce qui donne  
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Ce qui donne finalement  

Remarque : je n’ai pas détaillé les calculs sur les puissances, mais si ceux-ci ne sont pas intuitifs, n’hésitez 
évidemment pas à bien poser toutes les étapes pour vous assurer de votre compréhension. 
 
Le cas d’égalité se déduit de , qui impose l’égalité de tous les . 

Et finalement, si  est vraie, il en est de même de  

d) L’exercice 13 est proposé par ailleurs, on ne revient pas dessus : https://antoinemaths.wordpress.com/
2023/07/18/raisonnement-par-recurrence-4-exercices/. En 2 mots, il nous assure que les conditions 
«   » et «   » permet de s’assurer que la propriété est vraie sur . 

Ainsi, on conclut que  est vraie pour tout  de . 

Exercice 216 : 
Volume maximal d’un parallélépipède rectangle d’aire latérale fixée 
Les arêtes d’un parallélépipède rectangle ont pour longueurs . Le volume du parallélépipède est noté 

, son aire latérale (la somme des aires de ses 6 faces) . 
a) Calculer  et  en fonction de . 

b) Montrer que . A quelle condition y’a-t-il égalité ? 

c) Quel est le volume maximal d’un parallélépipède d’aire latérale  donnée? Pour quels parallélépipèdes 
est-il atteint ? 

Solution : 
a) Le parallélépipède est composé de 3 paires de faces d’aires  et . 
 
On a donc  

Son volume est  

b) On applique l’inégalité arithmético-géométrique aux aires des faces du parallélépipède : 

 

Avec la question précédente, on obtient bien :  

L’égalité est atteinte pour , ce qui impose . 

c) D’après la question précédente, le volume est maximisé en cas d’égalité de l’inégalité arithmético-
géométrique. 

Ainsi, le volume est maximal pour un cube. 

Exercice 217 : 
Inégalité isopérimétrique pour les triangles 
Soit  un triangle. On note  les longueurs respectives des côtés . Le demi-

périmètre de  est noté  : . L’aire de  est noté . 
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Le but des 3 premières questions est de démontrer la formule de Héron : . 

a) Au moins une des hauteurs est intérieure au triangle. Supposons que ça soit le cas de la hauteur issue 
de , dont on note  le pied. On pose  et . 

Montrer que  et que . 

b) Montrer que . 
c) Établir la formule de Héron. 

d) En déduire l’inégalité : , l’égalité ayant lieu si le triangle est équilatéral. Ainsi, parmi tous les 

triangles de périmètre fixé, l’aire maximale est atteinte pour les triangles équilatéraux. 

Solution : 
a) Représentation graphique : 

En appliquant le théorème de Pythagore sur les « demi-triangles » séparés par la hauteur, on trouve 
directement : 

 et que  

b) On sait que la surface de  est  et ainsi . 

Et d’après la question précédente, . 

Ainsi . 

c) Développons : 
 

 

 

 
 

 

Et donc , ce qui est la formule de Héron. 

(Plus précisément, c’est équivalent à la formule de Héron, car on devrait mettre le  en facteur du membre 

de droite). 

Toujours un ouf de soulagement en fin de calcul ! 

d) En utilisant l’inégalité arithmético-géométrique on a : 

 ou encore : 

  

S2 = p(p − a)(p − b)(p − c)

A H h = A H x = BH
x2 + h2 = c2 (a − x)2 + h2 = b2
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Et comme d’après la formule de Héron : , on trouve que . 

On conclut donc . 

 
Le cas d’égalité se produit pour . 

Ce qui signifie que le cas d’égalité se produit pour un triangle équilatéral. 
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