
Dans ce chapitre, sauf indication contraire, la fonction  fait référence à  

Exercice 208 : 
Soit  
a) En étudiant une fonction judicieuse, montrer que  
b) Soient  et  dans  avec . Montrer que . 

Solution : 
a) Etudions la fonction  définie par :  

 est bien dérivable sur  et  

Or, comme , , donc  et . 

Et comme , . 

Ce qui permet de conclure que  

b) Etudions cette fois le comportement de  et en particulier sa position par rapport à  

On pose  et on sait que  et . 

 est bien dérivable et  

Comme  et donc  est décroissante donc . 

Comme , . 

Ce qui signifie que pour  et  dans  avec , , ce qui peut s’écrire 

. 

Et on conclut donc que pour  et  dans  avec ,  

Exercice 209 : 
L’inégalité de Young 
Soit . 

a) Montrer qu’il existe un unique réel  (que l’on appelle parfois exposant conjugué de ) tel que 

. Vérifier que . Déterminer  pour  et . 

b) On fixe  dans . Étudier les variations de la fonction  définie par  

c) Conclure que . 

φα φα : x ↦ xα

α ∈ ]0,1[
∀x ∈ ℝ+, (1 + x)α ⩽ 1 + xα

x y ℝ+ y > x yα − xα ⩽ (y − x)α

f ∀x ∈ ℝ+, f (x) = 1 + xα − (1 + x)α

f ℝ+ ∀x ∈ ℝ+, f ′￼(x) = α xα−1 − α (1 + x)α−1 = α xα−1 (1 − ( 1 + x
x )
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)
α ∈ ]0,1[ α − 1 < 0 ( 1 + x

x )
α−1

< 1 f ′￼(x) > 0

f (0) = 0 ∀x ∈ ℝ+, f (x) ⩾ 0

∀x ∈ ℝ+, (1 + x)α ⩽ 1 + xα

( y
x )

α

− ( y
x

− 1)
α

1

X =
y
x

X > 1 f : X ↦ Xα − (X − 1)α

f ∀X > 1, f ′￼(X ) = α Xα−1 − α (X − 1)α−1 = α (Xα−1 − (X − 1)α−1)
α < 1, α − 1 < 0 X ↦ Xα−1 ∀X > 1, f ′￼(X ) < 0

f (1) = 1 ∀X > 1, f (X ) ⩽ 1

x y ℝ+ y > x ( y
x )

α

− ( y
x

− 1)
α

⩽ 1

yα − (y − x)α ⩽ xα

x y ℝ+ y > x yα − xα ⩽ (y − x)α

p ∈ ]1, + ∞[
q p

1
p

+
1
q

= 1 q > 1 q p = 2 p = 4

y ℝ*+ f ∀x ∈ ℝ*+, f (x) =
xp

p
+

yq

q
− x y

∀(x , y) ∈ ℝ*2
+ , x y ⩽

xp

p
+

yq

q



Solution : 
a) Procédons par analyse / synthèse : 

 

Donc, si  existe,  et est unique. 

 

A l’inverse, . 

Donc  

Pour . 

Pour . 

b)  

 est dérivable comme fonction polynomiale et  

Donc  est décroissante entre , puis croissante jusqu’en . 

De plus,  

Et , qui est donc le 

minima de la fonction. 
 

c) On déduit de la question précédente . 

Ce qui permet de conclure . 

Exercice 210 : 
Déterminer la limite en  de . 

Solution : 
On écrit :  

 

Comme  par croissance comparée. 

On conclut  

1
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+
1
q

= 1 ⇔
p + q

pq
= 1 ⇔ p + q = pq

q q =
p
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1
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p = 4, q =

4
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∀x ∈ ℝ*+, f (x) =
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p
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yq

q
− x y
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f ]0,y
1
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∀x ∈ ℝ*+, f (x) =
xp
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+

yq

q
− x y ⩾ 0

∀(x , y) ∈ ℝ*2
+ , x y ⩽

xp

p
+

yq
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+∞
(1,01)x

x2023

(1,01)x

x2023
=

exln(1,01)

e2023ln(x)
= exln(1,01)−2023ln(x) = ex(ln(1,01) − 2023 ln(x)

x )

lim
x→+∞

ln (x)
x

= 0

lim
x→+∞

(1,01)x

x2023
= + ∞



Remarque : si je recommande toujours de regarder les représentations graphique, dans ce cas c’est assez 
trompeur, car le facteur mis à la puissance  est très proche de  et la puissance de  très grande au 
dénominateur. La fonction est donc rapidement décroissance en partant de  avant de remonter très 
lentement. Le comportement asymptotique est donc impossible à voir et ce qui apparaît sur le graphique 
peut amener à douter. 

Exercice 211 : 
Trouver la limite en  de : 

 

 

Solution : 
Remarque : On est sur le même principe de croissances comparées que dans l’exercice précédent. Je ne 
rentre pas dans les détails. 

 

 

 

 

 

Exercice 212 : 
Soit . En posant , trouver la limite en  de . 

Solution : 
On pose  et  tend vers  quand  tend vers . 

 

On peut écrire :  

Et donc  

Exercice 213 : 
En appliquant la méthode de démonstration du théorème 3 du 5.5, montrer que si  et  alors 

. 

1,01 1 x
0

+∞
f (x) = e− x x2, g (x) = e−x2x10000, h (x) = ln (x)8 e−x,

i (x) =
(1,0001)x

x2023
, j (x) =

ln (ln (x))
ln (x)

lim
x→+∞

f (x) = lim
x→+∞

e− x x2 = 0

lim
x→+∞

g (x) = lim
x→+∞

e−x2x10000 = 0

lim
x→+∞

h (x) = lim
x→+∞

ln (x)8 e−x = 0

lim
x→+∞

i (x) = lim
x→+∞

(1,0001)x

x2023
= + ∞

lim
x→+∞

j (x) = lim
x→+∞

ln (ln (x))
ln (x)

= 0

α ∈ ℝ*+ y =
1
x

0+ fα (x) = xαln (x)

y =
1
x

y 0+ x +∞

fα (y) = fα ( 1
x ) = ( 1

x )
α

ln ( 1
x ) = −

ln (x)
xα

lim
x→0+

fα (x) = 0−

a ∈ ℝ*+ α ∈ ℝ*+
lim

n→+∞

an

(n!)α = 0



Solution : 
Rappel : la méthode de la démonstration indiquée dans l’énoncé consiste à étudier les variations d’une suite 
en considérant le quotient de 2 termes consécutifs, ce qui est souvent plus pratique quand la suite présente 
des quotients, des produits ou des puissances. 

Définissons  par son terme générique . 

Etudions donc le quotient de 2 termes consécutifs : . 

On va forcément avoir un rang à partir duquel . 

Cherchons ce rang :  est équivalent à . 

Ce qui implique : . 
 est donc décroissante à partir d’un certain rang et minorée par , donc convergente. 

On utilise alors la propriété que si la limite  est différente de , comme  tend également vers ,  

devrait tendre vers . 
 

Or ici  tend vers , on conclut que  tend vers 0. 

Et donc . 

Autre méthode : comme  tend vers , on peut exhiber un rang à partir duquel ce rapport est inférieur à 

 (par exemple, mais n’importe quelle valeur ), et on compare ensuite les termes de la suite à une suite 

géométrique. Si pour , quantité qui tend vers . C’était d’ailleurs 

certainement plus simple… 
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