
Bac série C 1992 - Métropole gr. 1 

Exercice 1 : 
1. On cherche à résoudre :  
On remarque que  est solution évidente. 
On peut donc écrire :  

Cherchons donc les racines du trinôme  : 
 

Et donc les racines :  et . 

L’ensemble des solutions de  est  

Remarque : on note que les affixes de l’exercice suivant reprennent les solutions trouvées, ce qui est 
toujours bon signe ! 

2.
a. De par la définition de , on sait que  et  sont 2 sommets de l’ellipse. 

Et comme  et  sont sur , les sommes de leurs distances aux foyers sont égales et  est sur l’axe 
focal, donc  
 

 étant un sommet,  

Finalement on a  et  

L’excentricité .   Elle est donnée par le rapport  

Et les directrices sont  et  
 
b. Compte tenu de la position des sommets, on déduit : 

l’équation de  :  

c.  

z3 + z2 + 2z − 4 = 0
1

z3 + z2 + 2z − 4 = (z − 1) (z2 + 2z + 4)
X2 + 2X + 4

Δ′￼= 1 − 4 = − 3
z1 = − 1 + i 3 z2 = − 1 − i 3

z3 + z2 + 2z − 4 = 0 {1, − 1 + i 3, − 1 − i 3}

(E ) M1 M2

M1 M2 (E ) M1
F1M1 + F2M1 = 2ΩM1 = 4

M2 (ΩF1)2 + (M2F1)2 = 4

F1 (−2,0) F2 (0,0)

e =
1
2

e =
ΩF2

ΩM1

D1 : x = − 5 D2 : x = 3

(E )
(x + 1)2

4
+

y2

3
= 1
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Exercice 2 : 
1.

a. Par définition de , l’angle  

 

De plus, en calculant l’aire de , on a  ou . 

Finalement  est la similitude de centre , d’angle  et de rapport  

 

b. Par construction  est un rectangle. Et comme ,  

Et comme ,  on a bien  
 
On note que  et avec les questions précédentes : 

On déduit que l’image de  par  est  

2.
a. Notons  l’image de  par . L’angle de  étant , les triangles  et  sont proportionnels. 

Ce qui implique  et finalement  

Et donc l’image de  par  est  

b. Par propriété des points cocycliques, il suffit de montrer que  

A partir de la question précédente, on sait que  

Et d’après ce que nous avons vu dans les questions précédentes,  est proportionnel à  et on a 

bien . 

Ainsi  sont cocycliques. 

Figure illustrative : 

A HB (A H, A B) = −
π
6

A BC A B × AC = A H × BC A B = A H ×
BC
AC

S1 A −
π
6

BC
AC

ACIB (CA, CI) =
π
6 (AC, A I) = −

π
6

IA = BC S1 (C ) = I

(BC ) = (BH )

(BC ) S1 (IB)

I′￼ I S2 S2
π
2

A BC A II′￼

(IA, II′￼) = −
π
3

(II′￼) = (IC )

(BI ) S2 (IC )

(MA, MM′￼) = (IA, IM′￼)
(IA, IM′￼) = −

π
3

MA M′￼ A BC

(MA, MM′￼) = (IA, IM′￼)
(M, I, A, M′￼)
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Problème : 
Remarque : je souffre une nouvelle fois de mon incapacité de faire des tableaux de variations avec mes 
outils. Il faudrait que je trouve une solution plutôt que de le noter à chaque fois ! 
Partie I 
1. Soit  et  

 est bien dérivable sur son ensemble de définition et : 

 

Donc  est strictement croissante et en notant que , 

On conclut que  et . 

2.
a. D’après la définition donnée, . 

 est bien dérivable sur sur domaine de définition et 

 

Avec , on identifie bien  

Plus généralement, 

. 

Ce qui justifie :  

Remarque : vu la formulation, j’imagine que l’idée était de dériver  dans un premier temps, mais je ne vois 
pas l’intérêt, car la formule générale s’applique bien à . 

b. Soit  impair. 
Si  est impair,  est pair et donc . 

Et d’après le résultat de la question précédente, on a bien  et  sont de 
même signe. 

 est décroissante et  est croissante. 

Je donne directement les limites cherchées, qui ne présentent aucune difficulté, le seul point d’attention est 
le signe de  quand  tend vers , ici négatif et positif dans la question suivante. 

 et  

c. Soit  pair. 
On n’insiste pas non plus sur cette question, aucune difficulté, il faut juste noter que  est négatif entre 

 et  et  y est positif. 

Sur  est croissante,  et  

3.
a. Etudions  

Or,  donc  est du signe de  

n ∈ ℕ* ∀x ∈ ] − 1, + ∞[, hn (x) = nln (1 + x) +
x

1 + x

hn

∀x ∈ ] − 1, + ∞[, h′￼n (x) =
n

1 + x
+

1 + x − x
(1 + x)2 =

n (1 + x) + 1
(1 + x)2 > 0

hn hn (0) = 0

∀x ∈ ] − 1,0], hn (x) ⩽ 0 ∀x ∈ [0, + ∞[, hn (x) ⩾ 0

∀x ∈ ] − 1, + ∞[, fn (x) = xnln (1 + x)
fn
∀x ∈ ] − 1, + ∞[, f ′￼n (x) = n xn−1ln (1 + x) +

xn

1 + x

n = 1 ∀x ∈ ] − 1, + ∞[, f ′￼1 (x) = h1 (x)

∀x ∈ ] − 1, + ∞[, f ′￼n (x) = n xn−1ln (1 + x) +
xn

1 + x
= xn−1 (nln (1 + x) +

x
1 + x )

∀x ∈ ] − 1, + ∞[, f ′￼n (x) = xn−1hn (x)

f1
n = 1

n
n n − 1 xn−1 ⩾ 0

∀x ∈ ] − 1, + ∞[, f ′￼n (x) hn (x)

∀x ∈ ] − 1,0], fn ∀x ∈ [0, + ∞[, fn

xn x −1

lim
x→−1

fn (x) = + ∞ lim
x→+∞

fn (x) = + ∞

n
xn−1

−1 0 xn

] − 1, + ∞[, fn lim
x→−1

fn (x) = − ∞ lim
x→+∞

fn (x) = + ∞

∀x ∈ ] − 1, + ∞[, f1 (x) − f2 (x) = xln (1 + x) − x2ln (1 + x) = (1 − x) xln (1 + x)

∀x ∈ ] − 1, + ∞[, xln (1 + x) ⩾ 0 f1 (x) − f2 (x) 1 − x
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Donc  est au-dessus de  sur , avec intersections en  et  puis en dessous. 

b.  

Partie II 
1. On pose  

a. On a déjà  et donc . 

Par croissance de la fonction , on peut écrire : . 

Ce qui implique, . 

Et donc  

b. Par le théorème des gendarmes  on conclut immédiatement que  tend vers . 

c. Vérifions la monotonie de  : 

 

Or, sur , ,  et , ce qui donne que . 

Ainsi  est décroissante, ce qui nous assurera que l’identification de  implique que la majoration 

sera vraie pour tous les  suivants. 

𝒞1 𝒞2 ] − 1,1] 0 1

∀n ∈ ℕ*, Un = ∫
1

0
xnln (1 + x) d x

∀n ∈ ℕ*, ∀x ∈ [0,1], xnln (1 + x) ⩾ 0 Un ⩾ 0

ln ∀x ∈ [0,1], ln (1 + x) ⩽ ln (2)

∀x ∈ [0,1], ∫
1

0
xnln (1 + x) d x ⩽ ln (2)∫

1

0
xnd x =

ln (2)
n + 1

∀n ∈ ℕ*, 0 ⩽ Un ⩽
ln (2)
n + 1

(Un)n⩾1
0

(Un)n⩾1

∀n ∈ ℕ*, Un+1 − Un = ∫
1

0
xn+1ln (1 + x) d x − ∫

1

0
xnln (1 + x) d x = ∫

1

0
(x − 1) xnln (1 + x) d x

[0,1] xn ⩾ 0 ln (1 + x) ⩾ 0 x − 1 ⩽ 0 ∀n ∈ ℕ*, Un+1 − Un ⩽ 0

(Un)n⩾1
n0

n
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En reprenant la question précédente, on cherche . 

Ce qui donne . 

Et donc avec ,  

2.
a. Commençons par vérifier l’indication donnée : 

 

 
Remarque : ce résultat est évidemment vrai tant que  est différent de . 

 

b.  

Comme proposé, nous allons procéder à une intégration par partie : 

 

Donc  

3.  et . On pose  
a.  
En additionnant les 2 (on remarque que les mêmes puissances de  apparaissent avec un signe opposé) : 

 

Et donc :  

b. On a donc l’égalité  

On peut donc intégrer les 2 membres entre  et  : 

En notant que  et  

On arrive au résultat :  

c. Remarquons que (intégration par parties) : 

 

En intégrant ce résultat dans l’égalité précédente,  

Un0
⩽

ln (2)
n0 + 1

⩽
1

100
n0 + 1 ⩾ 100 × ln (2) = 69.3

n0 = 69 ∀n ⩾ n0, 0 ⩽ Un ⩽
1

100

∀x ∈ [0,1],
x2

x + 1
=

x2 − 1 + 1
x + 1

=
(x + 1) (x − 1)

x + 1
+

1
x + 1

= x − 1 +
1

x + 1

x 1

∫
1

0

x2

x + 1
d x = ∫

1

0
x − 1 +

1
x + 1

d x = [ x2

2
− x + ln (x + 1)]

1

0

= ln (2) −
1
2

U1 = ∫
1

0
xln (1 + x) d x

∫
1

0
xln (1 + x) d x =

1
2 [x2ln (1 + x)]1

0
−

1
2 ∫

1

0

x2

x + 1
d x =

1
2 (ln (2) − ln (2) +

1
2 ) =

1
4

U1 =
1
4

x ∈ [0,1] n ⩾ 2 ∀x ∈ [0,1], Sn (x) = 1 − x + . . . + (−1)n xn

∀x ∈ [0,1], xSn (x) = x − x2 + . . . + (−1)n xn+1

x
(1 + x) Sn (x) = 1 + (−1)n xn+1 = 1 − (−1)n+1 xn+1

Sn (x) =
1

1 + x
−

(−1)n+1 xn+1

1 + x

∀x ∈ [0,1], 1 − x + . . . + (−1)n xn =
1

1 + x
−

(−1)n+1 xn+1

1 + x

0 1

∫
1

0
(−1)n xnd x =

(−1)n

n + 1 ∫
1

0

1
1 + x

d x = ln (2)

1 −
1
2

+ . . . +
(−1)n

n + 1
= ln (2) − (−1)n+1 ∫

1

0

xn+1

1 + x
d x

∫
1

0

xn+1

1 + x
d x = [xn+1ln (1 + x)]1

0
− (n + 1)∫

1

0
xnln (1 + x) d x = ln (2) − (n + 1) Un

©antoine.remond.maths@gmail.com

mailto:antoine.remond.maths@gmail.com


 

 

Ce qui implique directement (avec ) : 

 

4. La surface à calculer est la différence entre  et . 
 

En utilisant la formule précédente :  

Et l’aire de  est  soit environ 

1 −
1
2

+ . . . +
(−1)n

n + 1
= ln (2) − (−1)n+1 (ln (2) − (n + 1) Un)

(−1)n+1 =
1

(−1)n+1

Un =
ln (2)
n + 1

−
(−1)n+1

n + 1 [ln (2) − (1 −
1
2

+ . . . +
(−1)n

n + 1 )]
U1 U2

U2 =
ln (2)

3
+

1
3 (ln (2) − 1 +

1
2

−
1
3 ) =

1
3 (2ln (2) −

5
6 )

E
1
4

−
1
3 (2ln (2) −

5
6 ) 0.07 cm2
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