
Bac série C 1978 - Académie de Paris 

Exercice 1 : 
1. Rappel : les nombres « pointés » représentent les classes d’équivalence au sein de , c‘est à dire 

par exemple . Donc résoudre  revient à trouver, pour un  donné, les  
tels que  soit un multiple de . 

Commençons par remarquer que . Cela nous permet de distinguer 4 cas : 

•  : 
 est déjà un multiple de  est donc tous les éléments de  vont être solution de l’équation. 

(On notera  l’ensemble des solutions) 

Si ,  

•  : 
Tous les nombres congrus à un multiple de  sont solutions. 
En effet, . Comme le seul autre diviseur de  est , on cherche  de la forme 

, ainsi . 

Donc si ,  

Remarque : on note au passage que nous sommes dans un anneau qui n’est pas intègre, c’est à dire que la 
multiplication de 2 éléments non nuls peut faire . 

•  : 
Par le même raisonnement qu’au dessus, on trouve que les solutions vont être les classes d’équivalence 
des multiples de  

Ainsi pour ,  

• Tous les autres cas : 
En reprenant le cas du cas , on comprend qu’il n’y a pas de solution car le dernier terme de la 
multiplication ne sera jamais égal à . 

Finalement, si , . 

2. On cherche à résoudre l’équation . 
Si on reprend le calcul de multiplication explicité à la question précédente, on va pouvoir factoriser le trinôme 
« comme si » on était dans . 
Et comme , on peut écrire  

Ainsi, on veut résoudre , ce qui nous replace dans la situation de la 1ère question. 

Nous allons à nouveau découper en différents cas : 

•  ou  
•  ou  

Les 2 autres cas sont plus subtils car on va résoudre des systèmes présentant des congruences. 
• 1er cas : 

ℤ /91ℤ·1 = {91k + 1, k ∈ ℤ} a x = ·0 a x
a x 91

91 = 13 × 7

a = ·0
a 91 ℤ /91ℤ

S

a = ·0 S = ℤ /91ℤ

a = ·7
13

∃k ∈ ℤ, a = 91k + 7 91 13 x
x = 91k′￼+ 13n a x = 91(91kk′￼+ 13nk + 7k′￼) + (13 × 7)n

a = ·7 S = { ·13, ·26, ·39, ·52, ·65, ·78}
0

a = ·13

7

a = ·13 S = { ·7, ·14, ·21, ·28, ·35, ·42, ·49, ·56, ·63, ·70, ·77, ·84}
a = ·7

91

a ∉ { ·0, ·7, ·13} S = ∅

x2 + ·2x − ·3 = ·0

ℝ
x2 + 2x − 3 = (x − 1) (x + 3) x2 + ·2x − ·3 = (x − ·1) (x + ·3)

(x − ·1) (x + ·3) = ·0

x − ·1 = ·0 x = ·1
x + ·3 = ·0 x = ·88
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Et  
(Remarque : je vous encourage vivement à ne pas me croire sur parole et à vérifier les différentes classe 
solutions de chaque ligne et que le seul éléments commun est bien ) 

• 2ème cas : 

 

 
Dans ce cas  

Finalement, l’ensemble des solutions est  

Exercice 2 : 
Nous allons étudier l’équation . 

1. Commençons par regarder les cas particuliers : 
•  : 
L’équation devient  

Et  est l’axe des abscisses. 

•  : 
L’équation devient cette fois  

Ce qui nous indique que  est l’axe des ordonnées. 

En réécrivant l’équation .  

En mettant de côté les cas déjà traités, nous pouvons écrire : . 

Nous allons à nouveau distinguer plusieurs cas : 
•  : 
Dans ce cas, on a  et . On reconnaît alors l’équation d’une ellipse. 

Si ,  est l’ellipse de centre  et de sommets  

•  : 
Cette fois, nous avons  et . Nous avons donc l’équation d’une ellipse. 

Quand ,  est l’hyperbole de centre  de sommets  et d’asymptotes 

  

•  : 
Pour ce dernier cas, nous avons  et . Nous avons à nouveau l’équation d’une ellipse, mais 
cette fois, les foyers sont sur l’axe des ordonnées ! 

{
x − ·1 ≡ 0 [7]
x + ·3 ≡ 0 [13]

⇔ {
x ≡ ·1 [7]
x ≡ ·10 [13]

x = ·36
·36

{
x − ·1 ≡ 0 [13]
x + ·3 ≡ 0 [7]

⇔ {
x ≡ ·1 [13]
x ≡ ·4 [7]

x = ·53

{ ·1,3 ·6, ·53, ·88}

λ x2 + (1 − λ) y2 + λ2 − λ = 0

λ = 0
x2 = 0

C0

λ = 1
y2 = 0

C1

λ x2 + (1 − λ) y2 = λ − λ2 = λ (1 − λ)
x2

1 − λ
+

y2

λ
= 1

λ ∈ ]0,1[
λ > 0 1 − λ > 0

λ ∈ ]0,1[ Cλ O ( 1 − λ,0), (− 1 − λ,0), (0,λ), (0, − λ)

λ < 0
λ < 0 1 − λ > 0

λ < 0 Cλ O ( 1 − λ,0), (− 1 − λ,0)
y = ± −λ

1 − λ
x

λ > 1
λ > 0 1 − λ > 0
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Quand ,  est l’hyperbole de centre , de sommets  et  et d’asymptotes 

. 

2. Soit  un point du plan. 
Ses coordonnées doivent donc vérifier :  

Le point  étant fixé, il faut considérer cette équation comme une équation du second degré en , 
que l’on réécrit : 

. 

 

Et finalement, nous devons étudier :  

Les solutions vont donc dépendre de la position de  par rapport aux droites : 
, ,  et  

•  : 
Si  est sur une des droites indiquées ci-dessus,  est sur une seule . 
Attention : sauf sur les intersections de ces droites, qui tombent sur les axes abscisses et des ordonnées, 
qui sont des cas particuliers pour  et . J’aurais donc dû commencer par ces cas. 

•  : 
En raisonnant géométriquement sur le plan, on trouve qu’il n’y a aucune solution quand on se situe à 
l’intérieur strict des bandeaux définis par les droites  et  d’une part et  et  d’autre part. 
Il faut que les 2 membres du produit soient de signes opposés, ce qui correspond bien à cet ensemble. Je 
laisse à chacun la rédaction détaillée du calcul si besoin. 

•  : 
Tous les reste du plan va donc donner 2 courbes  pour chaque . 

• Cas particuliers  et  : 
On retrouve les cas particuliers des axes des abscisses et des ordonnées comme courbes  et  

Graphiquement : 
Les zones considérées sont « strictes », ie. Elles ne contiennent pas les droites de délimitations qui 
correspondent à d’autres ensembles de réponses.  
Les bandes vertes et rouges sont les zones sans solution. 
Le carré orange correspond à la zone dans laquelle par chaque point passent 2 ellipses. 
La zone blanche correspond à la zone dans laquelle par chaque point passent 2 hyperboles. 
Les droites sont les zones à solution unique, à l’exception des points  et . 

λ > 1 Cλ O (0,λ) (0, − λ)

y = ± λ
1 − λ

x

M0 (x0, y0)
λ x 2

0 + (1 − λ) y2
0 + λ2 − λ = 0

M0 (x0, y0) λ

λ2 + λ (x 2
0 − y2

0 − 1) + y2
0 = 0

Δλ = (x 2
0 − y2

0 − 1)2 − 4y2
0 = (x 2

0 − y2
0 − 1 − 2y0) (x 2

0 − y2
0 − 1 + 2y0)

Δλ = (x 2
0 − (y0 + 1)2) (x 2

0 − (y0 − 1)2)
M0

d1 : y = x + 1 d2 = − x + 1 d3 = x − 1 d4 = − x − 1

Δλ = 0
M0 M0 Cλ

λ = 1 λ = 0

Δλ < 0

d1 d3 d2 d4

Δλ > 0
Cλ M0

λ = 1 λ = 0
C0 C1

A, B, C D
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Problème : 
Partie A : 

Nous allons étudier la famille de fonctions  

1.
a. Le domaine de définition  de  dépend de la valeur de son dénominateur :  est définie en tout 

point où son dénominateur est non nul. 
Procédons donc à la disjonction de cas proposée par l’énoncé : 
•  : 
Dans ce cas,  

Donc si ,  

•  : 
 

Ce qui implique que si ,  

•  : 
On doit résoudre  ou . 
Cette équation a 2 solutions,  ou . 

fm (x) =
2 (x − m)

x − m + m

𝒟m fm fm

m > 0
x − m + m > 0

m > 0 𝒟m = ℝ

m = 0
x − m + m = x

m = 0 𝒟m = ℝ*

m < 0
x − m + m = 0 x − m = m

x = 0 x = 2m
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On conclut ce dernier cas si ,  

b. Les fonctions  sont continues sur leur ensemble de définition comme quotient de fonctions qui le sont. 

Donc  

c. Le principe est le même pour la dérivation. La fonction valeur absolue est dérivable sur  et donc  va 
être dérivable sauf aux valeurs pour lesquelles le dénominateur s’annule, auquel on ajoute  pour 
laquelle la valeur absolue n’a pas de dérivée.. 

Finalement, on a :  

2. Nous allons à nouveau pratiquer une disjonction de cas pour étudier les asymptotes. 

Commençons pas le cas le plus simple. 
•  : 

, ce qui signifie : 

 et  

Ainsi, les asymptotes sont confondues avec la courbe  : en ,  et en ,  

•  : 
D’après l’étude du domaine de définition, on doit étudier le comportement autour des points singuliers du 
domaine de définition,  et . 
Quand  : 

 et  et comme il n’y a pas de forme indéterminée, on trouve : 
 

Quand  : 
 et  et ainsi :  

De la même façon : 
Quand  : 

 et  et comme il n’y a pas de forme indéterminée, on trouve : 
 

Quand  : 
 et  et ainsi :  

Quand ,  possède 2 asymptotes verticales  et  

Regardons maintenant le comportement en  : 
Quand  : 

 et ainsi  

Et donc  

De la même façon,  

m < 0 𝒟m = ℝ∖{2m ,0}

fm

𝒞m = 𝒟m

ℝ* fm
x = m

ℱm = 𝒟m∖{m}

m = 0
∀x ∈ ℝ*, f0 (x) =

2x
x

∀x > 0, f0 (x) = 2 ∀x < 0, f0 (x) = − 2

C0 −∞ y = − 2 +∞ y = 2

m < 0

x = 2m x = 0
x → 2m−

x − m < 0 x − m + m > 0
lim

x→2m−
fm (x) = − ∞

x → 2m+
x − m < 0 x − m + m < 0 lim

x→2m+
fm (x) = + ∞

x → 0−
x − m > 0 x − m + m < 0

lim
x→2m−

fm (x) = − ∞

x → 2m+
x − m > 0 x − m + m > 0 lim

x→2m+
fm (x) = + ∞

m < 0 Cm x = 2m x = 0

±∞
x → − ∞

x − m = − (x − m) fm (x) =
2 (x − m)

x − m + m
= − 2

x − m

(x − m) (1 + m
x − m )

= − 2
1

1 + m
x − m

lim
x→−∞

fm (x) = − 2

lim
x→+∞

fm (x) = 2
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Et on retrouve les asymptotes horizontales en ,  et en ,  

• Dernier cas :  : 
Il faut uniquement étudier le comportement en . Les limites sont les mêmes que pour le le cas 
précédent. 

La courbe admet également les asymptotes horizontales en ,  et en ,  

Remarque : même si ça ne change pas les asymptotes, on note cependant (ce qu’on va voir sur la 
représentation graphique), qu’on arrive vers les limites par valeurs supérieures ou inférieures selon la valeur 

de . Cette valeur modifiant la position de  par rapport à . 

 qui est composée de 2 demi-droites admet  comme centre de symétrie. 

Pour , on a toujours . 
Comparons  et  : 
Nous allons traiter directement le cas générique, car les points singuliers identifiés sont symétriques par 
rapport à  :  et  pour  et donc si , il en est de même pour . (Et 
heureusement vu ce qu’on chercher à montrer !) 
 

On obtient immédiatement :  

Et donc le point  est centre de symétrie pour  

Représentation graphique : 

−∞ y = − 2 +∞ y = 2

m > 0
±∞

−∞ y = − 2 +∞ y = 2

m 1 +
m

x − m
1

C0 O(0,0)

m ≠ 0 fm(m) = 0
fm(m + x) fm(m − x)

m 0 2m m < 0 m + x ∈ 𝒟m m − x

fm (m + x) =
2x

x + m
= − fm (m − x)

Om(m ,0) Cm
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a. Soit , . 

Donc pour tout , la courbe  passe par le point . 

Considérons maintenant  et  de  tels que  et étudions la quantité  pour tout 
. 

Nous allons une nouvelle fois procéder à une disjonction de cas. Nous avons déjà justifier que ces fonctions 
sont bien définies sur , nous ne revenons pas dessus dans les différentes écritures des dénominateurs. 

•  : 

 

 

•  : 

 

•  : 

 

 

Or , donc nous allons étudier la quantité . 

Comme ,  et ,  et , mais ne pouvant pas être égales à  
en même temps. 
Ce qui permet d’affirmer que  

On conclut que pour les  strictement positifs, les  ont un unique point commun en . 

b. Soit  strictement positif. 

 

Donc  

De la même façon : 

 

Et ainsi :  

m > 0 fm (0) = −
2m

−m + m
= −

2m
2m

= − 1

m > 0 Cm (0, − 1)

m n ℝ 0 < m < n fm (x) − fn (x)
x ≠ 0

ℝ

x < m

fm (x) − fn (x) =
2 (x − m)

x − m + m
−

2 (x − n)
x − n + n

=
2 (x − m)
2m − x

−
2 (x − n)
2n − x

= − 1 +
x

2m − x
+ 1 −

x
2n − x

=
x

2m − x
−

x
2n − x

≠ 0

x > n

fm (x) − fn (x) =
2 (x − m)

x − m + m
−

2 (x − n)
x − n + n

=
2n − 2m

x
≠ 0

m ⩽ x ⩽ n

fm (x) − fn (x) =
2 (x − m)

x − m + m
−

2 (x − n)
x − n + n

=
2 (x − m)

x
−

2 (x − n)
2n − x

=
2 (x − m) (2n − x) − 2x (x − n)

x (2n − x)
=

2
x (2n − x) ((x − m) (2n − x) − x (x − n))

2
x (2n − x)

≠ 0 (x − m) (2n − x) − x (x − n)

m ⩽ x ⩽ n 2n − x > 0 x > 0 x − m ⩾ 0 n − x ⩾ 0 0

(x − m) (2n − x) − x (x − n) ≠ 0

m Cm (0, − 1)

m

fm (x) =
2 (x − m)

x − m + m
=

2m ( x
m − 1)

m ( x
m − 1) + m

=
2m ( x

m − 1)
m ( x

m − 1 + 1)
=

2 ( x
m − 1)

( x
m − 1 + 1)

fm (x) = f1 ( x
m )

f−m (x) =
2 (x + m)

x + m − m
=

2m ( x
m + 1)

m ( x
m + 1 − 1)

=
2 ( x

m + 1)
( x

m + 1 − 1)
f−m (x) = f−1 ( x

m )
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Partie B : 
1.

a.  

Et 

 

 

Également 

 

Donc  

 

On conclut :  

b. Par croissance comparée,  on déduit  

2.
a. Nous allons étudier les variations de . 
Remarque : en tout état de cause, il aurait fallu le faire dès la question 2 de la partie A. Ca n’était pas indiqué 
et compte-tenu de la densité des questions, je me suis emballé et ai oublié cette partie ! 

Par hypothèse, .  est dérivable sauf pour . 

 et  

D’autre part : 

 et  

(Remarque : on ne l’utilise pas spécialement, mais on remarque que  tend vers  quand  tend vers 

 par valeurs supérieures ou inférieures) 

On conclut que pour ,  est strictement croissante. 
(Remarque : de la même façon on prouve que  est strictement décroissante quand ) 

Ce la nous permet de dire que  et donc . 
 
En majorant l’intégrale étudiée par l’intégrale d’une constante, 

On conclut  

∫
a

0
2 − fm (x) d x = ∫

a

0
2d x − ∫

m

0
fm (x) d x − ∫

a

m
fm (x) d x = 2a − ∫

m

0

2 (x − m)
2m − x

d x − ∫
a

m

2 (x − m)
x

d x

∫
m

0

2 (x − m)
2m − x

d x = 2∫
m

0

2 (x − m)
4m − 2x

d x = 2∫
m

0
− 1 +

2m
4m − 2x

d x = − 2m − 2m [ln 2x − 4m ]
m

0
= − 2m (1 + ln (2m) − ln (4m)) = − 2m (1 − ln (2))

∫
a

m

2 (x − m)
x

d x = ∫
a

m
2 −

2m
x

d x = 2a − 2m − 2m [ln (x)]a
m

= 2a − 2m (1 − ln ( a
m ))

∫
a

0
2d x − ∫

m

0
fm (x) d x − ∫

a

m
fm (x) d x = 2a + 2m (1 − ln (2)) − 2a + 2m (1 − ln ( a

m ))
= 2m (2 − ln ( 2a

m )) = 2m (2 + ln ( m
2a ))

∫
a

0
2 − fm (x) d x = 2m (2 + ln ( m

2a ))
lim
m→0 ∫

a

0
2 − fm (x) d x = 0

fm

m > 0 fm x = m

∀x < m , fm (x) =
2 (x − m)
2m − x

f ′￼m (x) =
2 (2m − x) + 2 (x − m)

(2m − x)2 =
2m

(2m − x)2 > 0

∀x > m , fm (x) =
2 (x − m)

x
f ′￼m (x) =

2x − 2 (x − m)
x2

=
2m
x2

> 0

f ′￼m (x)
2
m

x

m

m > 0 fm
fm m < 0

∀x ∈ [0,m], fm (x) ∈ [−1,2] 0 ⩽ 2 − fm (x) ⩽ 3

∫
m

0
[2 − fm (x)]p d x ⩽ 3pm
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b.  

Et  

c. En utilisation la relation de Chasles, on peut écrire : 

 

Or,  et  étant fixé,  

Et par le théorème des gendarmes  

En reprenant la question précédente, 

 

 

Cette écriture nous permet d’écrire que  

Et finalement  

3. On a toujours  

a. Considérons  :  

Ce qui nous donne . 

De plus, on a déjà vu que  

On pose donc  et  

b.  

Distinguons une nouvelle fois les différents cas : 
•  : 

 

Donc  

 
Ce qui nous donne donc  

On constate donc que  et donc on ne peut pas trouver un  tel que l’inégalité soit valable 

pour tout  

∫
a

m
[2 − fm (x)]p d x = ∫

a

m [2 −
2 (x − m)

x ]
p

d x = ∫
a

m [ 2m
x ]

p

d x = (2m)p [−
1

(p − 1) x p−1 ]
a

m

∫
a

m
[2 − fm (x)]p d x =

(2m)p

p − 1 ( 1
m p−1

−
1

a p−1 )

∫
a

0
[2 − fm (x)]p d x = ∫

m

0
[2 − fm (x)]p d x + ∫

a

m
[2 − fm (x)]p d x

0 ⩽ ∫
m

0
[2 − fm (x)]p d x ⩽ 3pm p lim

m→0
3pm = 0

lim
m→0 ∫

m

0
[2 − fm (x)]p d x = 0

∫
a

m
[2 − fm (x)]p d x =

(2m)p

p − 1 ( 1
m p−1

−
1

a p−1 ) =
2p

p − 1 (m −
mp

a p−1 )
lim
m→0 ∫

a

m
[2 − fm (x)]p d x = 0

lim
m→0 ∫

a

0
[2 − fm (x)]p d x = 0

m > 0

x ∈ ℝ* fm (x) =
2 (x − m)

x − m + m
=

2x (1 − m
x )

x 1 − m
x + m

∀x ∈ ℝ*, lim
m→0

fm (x) =
2x
x

∀m > 0, fm(0) = − 1

∀x ∈ ℝ*, λ (x) =
2x
x

= f0 (x) λ (0) = − 1

∀x ∈ ℝ*+, 2 − fm (x) = 2 −
2 (x − m)

x − m + m

x > m

2 − fm (x) = 2 −
2 (x − m)

x − m + m
=

2x − 2 (x − m)
x

=
2m
x

2 − fm (x) <
1
10

⇔
2m
x

<
1

10

x > 20m

2 − fm (x) <
1

10
m

x
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Il n’est donc pas nécessaire de traiter l’autre cas. 

c. Dans les questions précédentes nous avons déjà vu que : 
 

 est croissante et donc  est décroissante. 
Ainsi,  

•  : 

 et donc  

Et donc on va pouvoir majorer :  

Et donc avec , on a bien  et  

•  : 
En utilisant la décroissance de , on déduit de que le  qui pourra être exhibé sera plus grand que 
dans le cas précédent. 

Finalement, avec , on a bien  et  

d. En prenant , on sait que . 

On peut intégrer cette inégalité : . 

Or d’après la question précédente, on a l’équivalence de cette inégalité avec : 

 

Ainsi on retrouve bien le résultat de B.2.c . 

Remarque : j’ai un peu triché pour répondre à cette question car on n’a pas tout à fait équivalence (ce qui en 
maths veut dire qu’on n’a pas tout court) car on a travaillé avec des inégalités strictes pour exhiber . Ces 
inégalités strictes n’apportant pas grand chose, on peut considérer que moralement on a bien équivalence. 

∀x ∈ ℝ+, 0 ⩽ 2 − fm (x) ⩽ 3
∀m > 0, fm 2 − fm

∀x ⩾ ϵ, 2 − fm (x) ⩽ 2 − fm (ϵ)

x > m

2 − fm (x) =
2m
x

∀x ⩾ ϵ,
2m
x

⩽
2m
ϵ

2m
x

⩽
2m
ϵ

< ϵ

α =
ϵ2

2
0 < m < α ∀x ⩾ ϵ, 2 − fm (x) < ϵ

x < m
2 − fm α

α =
ϵ2

2
0 < m < α ∀x ⩾ ϵ, 2 − fm (x) < ϵ

0 < m < α ∀x ⩾ ϵ, 2 − fm (x) < ϵ ⇒ [2 − fm (x)]p < ϵp

0 ⩽ ∫
a

ϵ
[2 − fm (x)]p d x < ∫

a

ϵ
ϵpd x ⩽ aϵp

0 ⩽ ∫
a

2m
[2 − fm (x)]p d x ⩽ aϵp

lim
m→0 ∫

a

0
[2 − fm (x)]p d x = 0

α
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