Bac série C 1978 - Académie de Paris

Exercice 1 :

1. Rappel : les nombres « pointés » représentent les classes d’équivalence au sein de 71917, c'est a dire
par exemple 1 = {91k + 1, k € Z}. Donc résoudre ax = O revient a trouver, pour un a donné, les x
tels que a x soit un multiple de 91.

Commengons par remarquer que 91 = 13 X 7. Cela nous permet de distinguer 4 cas :
e a=0:

a est déja un multiple de 91 est donc tous les éléments de Z /917 vont étre solution de I'équation.
(On notera S I'ensemble des solutions)

Sia=0,8S=7/917

ca=7:

Tous les nombres congrus & un multiple de 13 sont solutions.

Eneffet, 3k € Z, a = 91k + 7. Comme le seul autre diviseur de 91 est 13, on cherche x de la forme
x =91k" + 13n, ainsiax = 91(91kk’ + 13nk + 7k") + (13 X 7)n.

Doncsia =7, = {1’3,2’6, 39,52, 6‘5,7‘8}

Remarque : on note au passage que nous sommes dans un anneau qui n’est pas intégre, c’est a dire que la
multiplication de 2 éléments non nuls peut faire 0.

e a=13:
Par le méme raisonnement qu’au dessus, on trouve que les solutions vont étre les classes d’équivalence
des multiples de 7

Ainsi poura = 13, § = {7, 14,71,28,35. 42, 49,56, 63,70, 77 8‘4}

e Tous les autres cas :
En reprenant le cas du cas a = 7, on comprend qu'il 'y a pas de solution car le dernier terme de la
multiplication ne sera jamais égal a 91.

Finalement, si a & {O, 7, 1'3}, S =@.

2. On cherche a résoudre I'équation x2+2x-3=0.
Si on reprend le calcul de multiplication explicité a la question précédente, on va pouvoir factoriser le trindme

« comme si » on était dans R. _ - _ -
Et comme x2 4 2x —3 = (x — 1) (x + 3), on peut écrire x> 4+ 2x — 3 = (x - 1) (x + 3)

Ainsi, on veut résoudre (x - 1) (x + 3) = 0, ce qui nous replace dans la situation de la 1ére question.
Nous allons a nouveau découper en différents cas :

cx—i=Ooux=1
e x+3=00ux =88

Les 2 autres cas sont plus subtils car on va résoudre des systémes présentant des congruences.
e Jercas:

©antoine.remond.maths@amail.com



mailto:antoine.remond.maths@gmail.com

x—1=0[7] x=1/[7]
. < .
x+3=0][13] x =10[13]
Etx =36
(Remarque : je vous encourage vivement a ne pas me croire sur parole et a vérifier les différentes classe

solutions de chaque ligne et que le seul éléments commun est bien 3'6)

e 2émecas:

x—1=0[13] x =1/[13]
c+iz=ofr] T \w=4[]

Dans cecas x = 53

Finalement, 'ensemble des solutions est { 1,36, 5'3, 8'8}

Exercice 2 :
Nous allons étudier I'équation Ax> + (1 — ) y?> + 1> -1 = 0.

1. Commencgons par regarder les cas particuliers :
e 4 =0

L'équation devient x> = 0

Et C, est I'axe des abscisses.

e A=1:

L'équation devient cette fois y2 =0

Ce qui nous indique que C, est I'axe des ordonnées.

En réécrivant l'équation Ax2 + (1 =) y2 =1 -1 =1 (1 = A).
2

2
* Yo
PR

En mettant de cété les cas déja traités, nous pouvons écrire :

Nous allons a nouveau distinguer plusieurs cas :

. /1€|O,1|:

Dans ce cas,onal > 0et1 — A > 0. On reconnait alors I'équation d’une ellipse.

Sile ]O,l [ C, est I'ellipse de centre O et de sommets < 1- /1,0>, <— 1- ﬁ,O), 0,4),(0, =)

e 1 <0

Cette fois, nous avons 4 < 0 et 1 — A > 0. Nous avons donc I'équation d’une ellipse.

Quand 4 < 0, C, est I'hyperbole de centre O de sommets < 1- /1,0), (— 1- ﬂ,O) et d’asymptotes
-1
1-21

y== X

e A>1:
Pour ce dernier cas, nous avons A > 0 et 1 — A > 0. Nous avons a nouveau I'équation d’une ellipse, mais
cette fois, les foyers sont sur I'axe des ordonnées !

©antoine.remond.maths@amail.com



mailto:antoine.remond.maths@gmail.com

Quand 4 > 1, C; est I'hyperbole de centre O, de sommets (0,4) et (0, — 1) et d’'asymptotes

y=i‘/ 4 X.
1-4

2. Soit M, (xo, yo) un point du plan.
Ses coordonnées doivent donc vérifier : lxg +(1 -4 yg +12-2=0

Le point M, (xo,yo) étant fixé, il faut considérer cette équation comme une équation du second degré en 4,
que l'on réécrit :

2 2 _ 2 2
P+A(xi=y3—1)+y;=0.

8= (x5 =35 = 1) =40 = (x5 =55 = 1= 230) (x5 =35 = 1+ 2)
Et finalement, nous devons étudier : A, = (xg - (yo + 1)2> <x§ - (yo - 1)2>

Les solutions vont donc dépendre de la position de M, par rapport aux droites :
d] :y:x+1,d2:—x+1,d3:)(j—1etd4:_x_1

e A =0

Si M, est sur une des droites indiquées ci-dessus, M|, est sur une seule C;.

Attention : sauf sur les intersections de ces droites, qui tombent sur les axes abscisses et des ordonnées,
qui sont des cas particuliers pour A = 1 et A = 0. J’aurais donc dii commencer par ces cas.

* A -< 0 : ya , . . . . Y
En raisonnant géométriquement sur le plan, on trouve qu'il n’y a aucune solution quand on se situe a

lintérieur strict des bandeaux définis par les droites d, et d; d’'une part et d, et d, d’autre part.

Il faut que les 2 membres du produit soient de signes opposés, ce qui correspond bien a cet ensemble. Je
laisse a chacun la rédaction détaillée du calcul si besoin.

e A >0:
Tous les reste du plan va donc donner 2 courbes C; pour chaque M,

 Cas particuliersA =letd =0
On retrouve les cas particuliers des axes des abscisses et des ordonnées comme courbes C et C;

Graphiquement :
Les zones considérées sont « strictes », ie. Elles ne contiennent pas les droites de délimitations qui

correspondent a d’autres ensembles de réponses.

Les bandes vertes et rouges sont les zones sans solution.

Le carré orange correspond a la zone dans laquelle par chaque point passent 2 ellipses.

La zone blanche correspond a la zone dans laquelle par chaque point passent 2 hyperboles.

Les droites sont les zones a solution unique, a I'exception des points A, B, Cet D.
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Probleme :

Partie A :
2(x —m)

Nous allons étudier la famille de fonctions f,, (x) = —————
|x —m| +m
1.
a. Le domaine de définition &,, de f,, dépend de la valeur de son dénominateur : f,, est définie en tout
point ou son dénominateur est non nul.
Procédons donc a la disjonction de cas proposée par I'énonceé :

e m>0:
Dans ce cas, |x —m| +m > 0

Doncsim > 0,9, =R

em=0:
|x =m| +m = |x|

Ce qui implique que sim =0, &, = R*

e m<0:
On doit résoudre |x —m| +m =0ou |x —m| = |m|.
Cette équation a 2 solutions, x = Q oux = 2m.
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On conclut ce dernier cas sim < 0, 2,, = R\{2m,0}

b. Les fonctions f,, sont continues sur leur ensemble de définition comme quotient de fonctions qui le sont.

Donc €,, = 9

m

c. Le principe est le méme pour la dérivation. La fonction valeur absolue est dérivable sur R* et donc f,, va

étre dérivable sauf aux valeurs pour lesquelles le dénominateur s’annule, auquel on ajoute x = m pour
laquelle la valeur absolue n’a pas de dérivée..

Finalement,ona: %, = 92, \{m}

2. Nous allons a nouveau pratiquer une disjonction de cas pour étudier les asymptotes.
Commengons pas le cas le plus simple.
e m=0:

2
Vx € R*, fy(x) = ﬁ ce qui signifie :
X
Vx >0, fy(x) =2etVx <0, fy(x) ==2

Ainsi, les asymptotes sont confondues avec la courbe Cy:en —oco0,y = —2eten+o0,y =2

e m<0:
D’apres I'étude du domaine de définition, on doit étudier le comportement autour des points singuliers du

domaine de définition, x = 2metx = 0.

Quand x — 2m_:

x—m<0et|x—m|+m>0etcommeiln’y a pas de forme indéterminée, on trouve :
lim f,(x) =— o0

x—=2m_

Quand x — 2my, :

x—m<0et|x—m|+m<O0etainsi: lim f,(x)=+ o0

x—=2my

De la méme fagon :

Quandx — 0_:

x—m>0et |x —m| +m <0etcommeil n’y a pas de forme indéterminée, on trouve :
lim f,(x)=— o0

x—=2m_

Quand x — 2my, :

x—m>0et|x—m| +m>0etainsi: lim f,(x) =+
x—=2my

Quand m < 0, C,, posséde 2 asymptotes verticales x = 2metx =0

Regardons maintenant le comportement en oo :

Quandx — — co:
. 2(x —m) X—m 1

|x —m| =—(x —m)etainsif, (x) =————=-2 =—2—
|x_m|+m (x—m)<1+ = > 1+x—m

X—m

Etdonc lim f, (x) =—2

X—>—00

De la méme fagon, lim f, (x) =2
X—>+00
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Et on retrouve les asymptotes horizontales en —o0, y = — 2 eten +00,y = 2

e Derniercas:m > 0:

Il faut uniqguement étudier le comportement en 0. Les limites sont les mémes que pour le le cas
précédent.

La courbe admet également les asymptotes horizontales en —co, y = —2eten+o00,y =2

Remarque : méme si ¢ca ne change pas les asymptotes, on note cependant (ce qu’on va voir sur la
représentation graphique), qu’on arrive vers les limites par valeurs supérieures ou inférieures selon la valeur

de m. Cette valeur modifiant la position de 1 + par rapport a 1.

xX—m
C, qui est composée de 2 demi-droites admet O (0,0) comme centre de symétrie.

Pour m # 0, on a toujours f,,(m) = 0.

Comparons f,,(m + x) et f, (m — x) :

Nous allons traiter directement le cas générique, car les points singuliers identifiés sont symétriques par
rapportam : 0 et 2m pourm < Oetdoncsim +x € &, il en est de méme pour m — x. (Et
heureusement vu ce qu’on chercher a montrer!)

On obtient immédiatement : f,, (m + x) = ———— = —f, (m — x)
|x| +m
Et donc le point O,,(m,0) est centre de symétrie pour C,,
Représentation graphique :
7
6
5
4
3
2
1
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_ 2m 2m
a. SOItm>0,fm(0)=—m=—% =—1.

Donc pour tout m > 0, la courbe C,, passe par le point (0, — 1).

Considérons maintenant m et n de R tels que 0 < m < n et étudions la quantité f,, (x) — f,, (x) pour tout

x #0.

Nous allons une nouvelle fois procéder a une disjonction de cas. Nous avons déja justifier que ces fonctions
sont bien définies sur R, nous ne revenons pas dessus dans les différentes écritures des dénominateurs.

AsaL 2 (x = m) 20-n) _26c-m) 2(&x—n)

X —m X —n X —m xX—n
Jn @) =1, () = x—m|+m |x—n|+n: 2m—x  2n—-x

X X X
=—1+ +1- = - 70
2m —x 2n—x 2m—x 2n-—x

e X>n:
@ =)= X 2 _anmam
m "x_|x—m|+m [x—nl+n  x
ems<xsn: 2 ) 2 ) 2( ) 2( )

X —m X —n X —m xX—n
fm(x)_fn(x): |x_m|+m_ |x—l’l|+l’l: X B 2n —x
_2x-m)@n-x)-2x(x-n) _ 2 B o _
= T BT T ((x m)(2n —x) — x (x n))
Or ————— # 0, donc nous allons étudier la quantité (x — m) (2n — x) — x (x — n).
x (2n —x)

Commem <x<n2n—x>0etx >0,x —m = 0etn —x > 0, mais ne pouvant pas étre égales a 0
en méme temps.
Ce qui permet d’affirmerque (x —m)(2n —x) —x (x —n) # 0

On conclut que pour les m strictement positifs, les C,, ont un unique point commun en (0, — 1).

b. Soit m strictement positif.
26-m _ w(m-t)  w(E-1) 2(5-1)

= — + == R = =
|x —=m| +m ‘m(;—1>‘+m m<%—1|+1> (%—1‘+1>

seera1 ()

Jn )

X
m

De la méme facon :

doeem 2m<%+1> ) 2<%+1>

%+1‘—1> <%+1|—1>

f_m(x)z =
|x +m| —m <
m

Etainsi:f_,, (x) =1, < >

X
m
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Partie B :

1.
a a m a I’n2(x_m) az(x_m)
a. J 2—fm(x)dx=J 2dx—J fm(x)dx—J fm(x)dx=2a—J —dx—J ——dx
0 m 0 m

0 0 2m —x X

2m—x dm — 2x 0 dm — 2x

Et
J 2h-m x=2J de:ZJ 1+ = —2m—2m [in |25 —4m||”
0
=—2m(1+ln(2m)3zn(4m))=—2m(1—1n(2))

Egalement

“2(x —m) “ 2m a
J—dsz 2-—dx=2a-2m-2mln]| —2a—2m<1—ln< >>
m m m

X X

a

Donc rzdx—Jmfm(x)dx—J £ dx =2a+2m(1=1n(2) - 2a +2m (1 _In <i>>
m

) o)

On conclut : J 2—f,x)dx =2m <2 +In <ﬂ>>
0 2a

a
b. Par croissance comparée, [on déduit lim J 2—f,x)dx =0
m—0
0

2.

a. Nous allons étudier les variations de f,,.
Remarque : en tout état de cause, il aurait fallu le faire des la question 2 de la partie A. Ca n’était pas indiqué
et compte-tenu de la densité des questions, je me suis emballé et ai oublié cette partie !

Par hypothese, m > 0. f,, est dérivable sauf pour x = m.

_2(x—m) ' _2(2m—x)+2(x—m)_ 2m
Vx <m, f, (x) i — etf, (x) = m —x)2 = (2m—x)2 >0
D’autre part :
2x-m) 2x=2(x—m) 2m
Vx >m, f,(x) = ——etf, (x) = > =—2>O
X X X

2
(Remarque : on ne I'utilise pas spécialement, mais on remarque que f,, (x) tend vers — quand x tend vers
m

m par valeurs supérieures ou inférieures)

On conclut que pour m > 0, f,, est strictement croissante.
(Remarque : de la méme fagon on prouve que f,, est strictement décroissante quand m < 0)

Ce la nous permet de dire que Vx € [O,m], fn(x) € [—1,2] etdonc0<2—7,(x) <3

En majorant l'intégrale étudiée par I'intégrale d’une constante,

m

On conclut I [2 —f (x)]p dx <3Pm
0

©antoine.remond.maths@amail.com



mailto:antoine.remond.maths@gmail.com

a a _ p a p “
o [ pepoolran=] -2 = [ 2 e [
" m X mbL X (p - 1>x1’_1 .

a p
EtJ [2—fm(x)]pdx=(2m) ( 1 >

p—1\mp-1 qgr-l

c. En utilisation la relation de Chasles, on peut écrire :

r 2-f, ] dx = Jm 2 -£, @] dx + J 2 - £, @)]" dx
0 0 m

m
or, 0 < J 2= £, (0)]" dx < 3Pm et p étant fixé, lim 37m = 0
0 m—0

m
Et par le théoréme des gendarmes lim J [2 — I (x)]p dx =0

En reprenant la question précédente,
a 2m)? 1 1 2P P
J [2—fm(x)]pdx=(m) - = m— ”
m p—1\mr-1 qr-l p—1 ar-1

a
Cette écriture nous permet d’écrire que lim J [2 —fn (x)]p dx =0
m— m

0

a
Et finalement lim J [2 —fn (x)]p dx =0
m—0J

3. Onatoujoursm > 0
2amm  2(1-%)

|x —m| +m

a. Considéronsx € R*:f, (x) =
| x| ‘1—%‘ +m

. 2x
Ce qui nous donne Vx € R*, lim f, (x) = —.
m—0

| x|

De plus, on a déja vu que Vm > 0, f,(0) = —1

2
On pose donc Vx € R*, 1 (x) = il =fy(x)etA(0)=-1

| x|

2(x —m)

b. Vx€R:2—f, () =2——o 0
+ Jn @) |x —m| +m

Distinguons une nouvelle fois les différents cas :

s X>m:
2(x —m) 2x —=2(x—-m) 2m
|x —m| +m x X
Donc2 — £ (1) < o & 2" < L
onc2—f (X) < — & — < —
" 10 X 10

Ce qui nous donne donc x > 20m

1
On constate donc que 2 —fm x) < E et donc on ne peut pas trouver un m tel que I'inégalité soit valable

pour tout x
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Il n’est donc pas nécessaire de traiter I'autre cas.

c. Dans les questions précédentes nous avons déja vu que :
VxeR,0<2-f,0)<3

Vm > 0, f,, estcroissante et donc 2 — f,, est décroissante.
Ainsi, Vx > €, 2 —f, (x) <2 —f, (¢)

e xXx>m:
2m  2m
2—f,(x)= —etdochx €, — < —
X €
o 2m  2m
Et donc on va pouvoir majorer: — < — < €
X €

2
€
Etdoncaveca—? onabien0<m<aetVx >e,2—-f, (x)<e

e x<m:
En utilisant la décroissance de 2 — f,,, on déduit de que le a qui pourra étre exhibé sera plus grand que
dans le cas précédent.

Finalement, avec a = 7 onabien)<m <aetVx >e¢, 2—-f, (x)<e

d. EnprenantQ < m < a, onsaitque Vx > ¢, 2 — f(x)<€:>[2 f(x)] < eP.

On peut intégrer cette inégalité : 0 < J [2 —fon (x)]p dx < J ePdx < ael.

€

Or d’aprés la question précédente, on a I'équivalence de cette inégalité avec :

J [2 f(x)] dx <ae?
\2m

a
Ainsi on retrouve bien le résultat de B.2.c lim J [2 —fn (x)]p
0

m—0

Remarque : j’ai un peu triché pour répondre a cette question car on n’a pas tout a fait équivalence (ce qui en

maths veut dire qu’on n’a pas tout court) car on a travaillé avec des inégalités strictes pour exhiber a. Ces
inégalités strictes n’apportant pas grand chose, on peut considérer que moralement on a bien équivalence.

©antoine.remond.maths@amail.com



mailto:antoine.remond.maths@gmail.com

	Exercice 1 :
	Exercice 2 :
	Problème :

