
Remarque : dès qu’on doit étudier le comportement d’une fonction (voir d’une suite définie à partir d’une 
fonction), il est intéressant de regarder le graphique de la fonction considérée à la calculatrice ou Géogébra ! 

Exercice 137 : 
Déterminer, en utilisant un encadrement, la limite de la suite  définie par :  

 

Solution : 
Par définition de la partie entière, on trouve l’encadrement suivant : 

 

Or  

Donc  

 

Et on conclut  

Exercice 138 : 
Pour  on note  le nombre de chiffres de l’écriture décimale de  (  vaut  si ,  si 

 …). 

Déterminer la limite de la suite  définie par . 

On exprimera  à l’aide des fonctions parties entières et logarithme décimal. 

Solution : 
 

Par ailleurs, on sait que pour ,    ce qui implique 
 (par croissance du logarithme). 

Ou encore, . 

Et donc  

Or, quand  et donc . 

Finalement,  
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Exercice 139 : 
Déterminer la limite de la suite  définie par  

Solution : 
On peut encadrer : . 

On obtient immédiatement : . 

 

D’autre part :  dont la limite en  est également . 

Et donc par encadrement, . 

Exercice 140 : 
Flocon de Koch 
On construit une suite  de polygones de la manière suivante. On prend pour  un triangle 

équilatéral dont les côtés ont une longueur . Pour , on passe de  à  en partageant chaque 
segment du pourtour de  en 3 segments égaux, puis en substituant au segment central une réunion de 2 
segments égaux formant avec le segment supprimé un triangle équilatéral situé vers l’extérieur. 
Pour , soient  et  le nombre de côtés, la longueur des côtés, le périmètre et l’air de . 

a) Dessiner  et  
b) Pour , exprimer  et  en fonction de . Déterminer la limite de . 

c) Calculer . Montrer que . Montrer que  converge vers 

une limite finie que l’on calculera. 

Solution : 
a) Dessin du flocon de Koch pour les 6 premières étapes (je n’en suis pas l’auteur) : https://

www.geogebra.org/m/dMTAysVH. 

b) Commençons par déterminer  : 
, c’est l’hypothèse de départ de la construction. 

Ensuite, chaque côté du triangle est divisé en 4 « sous-segments » et . 
On recommence le même procédé et  

En reproduisant l’opération  fois, on trouve  . 

Déterminons maintenant  : 
 par construction. 

On construit ensuite  en divisant le côté en 3, donc . 

En reproduisant, . 
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Et comme pour , on réitère le précédé  fois, ce qui donne  . 

Finalement  : 
On sait que . 
 

Cela donne  . 

Finalement  et donc . 

c) On note  la hauteur des triangles équilatéraux « ajoutés » à l’étape . 

 (Remarque : si on ne connaît pas la formule par cœur, on la retrouve très rapidement avec 

Pythagore). 

Et . 

Pour passer de  à , on ajoute un triangle équilatéral sur chaque arête, donc  triangles, dont le côté 
mesure . 

On calcule . 

Et ainsi, l’aire « ajoutée » est donc . 

Finalement . 

De la formule précédente on déduit :  

Et donc 

 

On conclut . 

Ainsi le flocon de Koch a un périmètre qui tend vers  alors que son aire reste finie ! 
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