
Dans ce chapitre, sauf indication contraire, la fonction  fait référence à 


Exercice 203 :

La suite  est définie par  et .


Exprimer  en fonction de  et , puis déterminer la limite de 


Solution :

Regardons les premiers rangs :








Ces résultats initialise la proposition : .


Étudions l’hérédité avec le rang  :


.


Ce qui confirme la proposition et .


 

Le sens de variation de la suite va dépendre de la position de  par rapport à . Je laisse le soin à chacun 
de rédiger la récurrence rapide et on trouve :

Si ,  est croissante et majorée par .


Si ,  est décroissante et minorée par .



Si ,  est constante.


Dans les 3 cas, la suite  converge vers le point fixe de la fonction racine carrée : 


Exercice 204 :

Soit  un élément de  . On note  la fonction définie sur  par : 

.

a) Calculer la dérivée de 

b) Déterminer les limites de  quand  tend vers  et vers . On discutera de la position de  par 

rapport à .

c) Tracer les graphes de  et 


Solution :

a)  est bien dérivable comme composée de fonction qui le sont sur .


On a donc  


b) On comprend que c’est le signe de  qui détermine les variations de  et donc ses limites.


Si ,  est constante égale à .
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Si ,  et donc :







Si ,  et donc :





c) 


Exercice 205 :

Soit . Déterminer la limite de  quand  tend vers 


Solution :

En reprenant la notation de l’exercice précédent, comme   tend vers  quand  tend vers , on 
reconnaît dans cette limite la dérivée de  en .


Et donc 


Exercice 206 :

a) Soit  un intervalle de ,  une fonction dérivable de  dans  et  une fonction dérivable de  à 

valeurs dans . Pour  dans , on pose .

Calculer la dérivée de .


b) Écrire l’équation de la tangente au graphe de la fonction  au point d’abscisse 1. 


Solution :

a) Nous allons utiliser le procédé de l’exercice 204 et écrire : 


Nous allons dériver  comme une composée de fonctions dérivables (et les hypothèses nous assurent de 
ne pas diviser par . On a donc :
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b) En utilisant le résultat précédent avec , on obtient :

 et .




En utilisant la formule donnant l’équation de la tangente, on a : 


Ce qui donne finalement l’équation de la tangente à la courbe de  en  : .


Graphiquement :


Exercice 207 :

Un problème d’optimisation géométrique.

On considère une boîte fermée en forme de cylindre droit. La base est un disque de rayon , la hauteur 
du cylindre est .

On note  l’aire latérale de la boîte (incluant les 2 bases) et  son volume.

a) Justifier les relations :  et .


b) On suppose que  est fixé. En utilisant la relation  et en étudiant la fonction 

, dire comment choisir  et  pour que  soit minimale.


Solution :

a)  est constituée de l’aire des 2 bases et de l’aire du « tube ».

Or, l’aire d’un disque de rayon  est égale à  et celle du tube .



Pour le volume, il est égal à l’aire de la base multiplié par la hauteur.


Ce qui donne finalement  et 


b)  est bien dérivable sur son domaine de définition et : .


∀x ∈ I, w′￼(x) = (v′￼(x) ln (u (x)) +
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On constate que  est elle-même croissante (une fonction en  est croissante) entre , sa limite en 

 et .

Cela implique que  est décroissante puis croissante avec un minimum quand  s’annule. Elle s’annule en  

tel que :  ou .





Et donc on trouve  : 


Finalement, on minimise  avec  et 
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