
Exercice 11 :

Soient  et  deux nombres réels. On suppose que l’équation  admet deux racines réelles 
distinctes  et . On se propose de déterminer l’ensemble  des suites réelles  telles que 

.

a) Montrer que pour  et  dans , la suite  appartient à .


b) Soit  un élément de . Vérifier qu’il existe deux nombres réels  et  tels que  et 

.

c) Avec les notation de b), montrer que .

d) Retrouver le résultat de l’exercice 7.


Solution :

a) Etudions la relation entre 3 rangs successifs de la série  :







Ceci prouve que la suite  est bien un élément de 


b) On considère  un élément de .


 et  sont donc donnés. On cherche donc  et  qui vérifient :





Finalement, on trouve 


c) Tâchons de montrer la propriété demandée par récurrence.

Initialisation : pour  




Hérédité : supposons que la propriété est vraie au rang  et étudions le rang .






Et la propriété est vraie au rang .


Donc 


d) A l’exercice 7,  est définie par  et .


Les solutions de  sont  et .


Avec  et , on retrouve bien le même résultat !


Exercice 12 :

Soient  et  deux nombres réels. On suppose que l’équation  admet une unique racine réelle 
distinctes . On se propose de déterminer l’ensemble  des suites réelles  telles que 

.

a) Montrer que pour  et  dans , la suite  appartient à .


a b x2 = a x + b
λ μ ℰ (un)n∈ℕ

∀n ∈ ℕ, un+2 = aun+1 + bun
α β ℝ (αλn + βμn)n∈ℕ

ℰ

(un)n∈ℕ
ℰ α β α + β = u0

αλ + βμ = u1
∀n ∈ ℕ, un = αλn + βμn

(αλn + βμn)n∈ℕ
a (αλn+1 + βμn+1) + b (αλn + βμn) = aαλn+1 + aβμn+1 + bαλn + bβμn

= αλn (a λ + b) + βμn (aμ + b) = αλn+2 + βμn+2

(αλn + βμn)n∈ℕ
ℰ

(un)n∈ℕ
ℰ

u0 u1 α β

{α + β = u0

αλ + βμ = u1
⇔ {

β = u0 − α
αλ + (u0 − α) μ = u1

⇔ {α (λ − μ) = u1 − u0μ
β = u0 − α

α =
u1 − u0 μ

λ − μ

β = u0 −
u1 − u0 μ

(λ − μ)
=

λu0 − u1
λ − μ

n = 2
u2 = au1 + bu0 = a (αλ + βμ) + b (α + β) = αa λ + αb + βaμ + βb = αλ2 + βμ2

n n + 1
un+1 = aun + bun−1 = a (αλn + βμn) + b (αλn−1 + βμn−1) = αa λn + αbλn−1 + βaμn + βbμn−1

= αλn−1 (a λ + b) + βμn−1 (aμ + b) = αλn+1 + βμn+1

n + 1

∀n ∈ ℕ un = αλn + βμn

(un)n∈ℕ
u0 = 2, u1 = 5 ∀n ∈ ℕ, un+2 = 5un+1 − 6un

x2 = 5x − 6 λ = 2 μ = 3

α = 1 β = 1

a b x2 = a x + b
λ ℰ (un)n∈ℕ

∀n ∈ ℕ, un+2 = aun+1 + bun
α β ℝ (αλn + βn λn)n∈ℕ

ℰ



b) En reprenant la méthode de l’exercice précédent, montrer que si la suite  appartient à , il 

existe deux réels  et  tels que .


Solution :

a) Initialisation : vérifions la propriété pour .





Or, une équation du second degré peut s’écrire  où  et  sont respectivement la somme et le 
produit des racines du trinôme. On a donc .

Ceci permet de confirmer que  et .


Hérédité : supposons qu’au rang  la propriété doit vraie (ie. ) et étudions le rang 
 :




.


Et la propriété est confirmée pour le rang .


On conclut donc .


b) Procédons comme proposé de la même façon que dans l’exercice précédent en identifiant  et  (la 
présence du  simplifie le système !) :





Je ne refais pas le calcul, le raisonnement étant identique à l’exercice précédent, avec les calculs de la 
question ci-dessus ! (N’hésitez pas à les refaire en entraînement).


Exercice 13 :

Soit  une partie de  contenant  telle que :

i)  ii) 


a) Montrer que 

b) Montrer que 


Solution :

a) Par définition, . Donc par la 1ère propriété de , .

On a donc initialisé la récurrence avec  et  sont bien dans .


Hérédité : supposons  dans  et étudions le rang  :

A nouveau en utilisant la 1ère propriété,  et on s’assure de l’hérédité de la 
propriété.


On conclut 


b) On va montrer par récurrence que tous les entiers entre  et  sont bien dans .

initialisation : entre  et  :  étant dans ,  est bien dans  et donc tous les éléments le sont.

Hérédité : considérons que tous les entiers entre  et  sont dans  et étudions le rang  (entre 

 et ) :

Par hypothèse  et en utilisant la 1ère propriété on a , ce qui signifie que 
tous les nombres pairs entre  et  sont bien dans .


(un)n∈ℕ
ℰ

α β ∀n ∈ ℕ, un = αλn + βn λn

n = 2
au1 + bu0 = a (αλ + βλ) + bα = α (a λ + b) + aβλ = αλ2 + β (λ2 − b)

x2 − Sx + P S P
−b = λ

au1 + bu0 = αλ2 + 2βλ2 u2 = au1 + bu0

n + 1 un+1 = aun + bun−1
n + 2
aun+1 + bun = a (αλn+1 + β (n + 1) λn+1) + b (αλn + βn λn) = αλn (a λ + b) + βn λn (a λ + b)
= αλn+2 + βλn (a (n + 1) λ + nb) = αλn+2 + βλn ((n + 1) λ2 − b) = αλn+2 + β (n + 2) λn+2

n + 2

(αλn + βn λn)n∈ℕ
∈ ℰ

α β
n

{α = u0

αλ + βλ = u1
⇔ {

α = u0

β =
u1 − u0λ

λ

A ℕ* 1
∀n ∈ A, 2n ∈ A ∀n ∈ ℕ*, n + 1 ∈ A ⇒ n ∈ A

∀m ∈ ℕ, 2m ∈ A
A = ℕ*

1 ∈ A A 2 × 1 = 2 ∈ A
20 21 A

2m A m + 1
2m ∈ A ⇒ 2 × 2m = 2m+1 ∈ A

∀m ∈ ℕ, 2m ∈ A

2m 2m+1 A
21 22 4 A 4 − 1 = 3 A

2m 2m+1 A 2m+2

2m+1 2m+2

∀k ∈ [2m; 2m+1], k ∈ A 2k ∈ A
2m+1 2m+2 A



En utilisant la 2ème propriété, on trouve que tous les  sont également dans  et donc tous les 
nombres impairs contenus entre  et  sont dans .

La propriété reste donc bien valable entre  et .


On conclut finalement que .


Exercice 14 :

Fraction égyptiennes

On se propose de montrer que que tout rationnel de  s’écrit comme une somme d’inverses d’entiers 
naturels deux à deux distincts. Ce type d’écriture, utilisée par les égyptiens pendant l’antiquité, n’a pas grand 
intérêt, mais la preuve du résultat est un bon exemple de raisonnement par récurrence.

a) Soit  un rationnel de . On écrit donc .


On effectue la division euclidienne de  par  : .

On suppose que  n’est pas l’inverse d’un entier, ie. que  ne divise pas  ou encore 


Montrer que  peut s’écrire sous la forme 


b) En utilisant une hypothèse de récurrence judicieuse, démontrer la propriété voulue.


c) Constater que la démonstration précédente fournie un algorithme de calcul et l’appliquer à 


Solution :

a) Soit  un rationnel de , on écrit .


On écrit ,  et  par hypothèse.







En posant  et , on a bien  avec  par définition de 

.


b) Notons qu’on est plutôt dans un algorithme « tant que » que dans une récurrence. C’est d’ailleurs le sens 
de la question suivante, mais je mets la remarque dès maintenant, car on ne pourra évidemment pas 
avoir une proposition du type «  » ce qui pourrait déranger certains.


Initialisons la proposition : Tant que , on peut écrire  avec 

. On a de plus  et . 


Par construction, on a toujours .


On modifie les notation de la réponse précédente en  et , puis  et 

.


Hérédité : supposons la propriété vraie au rang  et étudions le rang 

En effectuant la division euclidienne de  par  : .


On a 


Ce qui confirme l’hérédité de la propriété.


2k − 1 A
2m+1 2m+2 A

2m+1 2m+2

A = ℕ*

]0,1[

x ]0,1[ x =
m
n

, (m , n) ∈ ℕ*2, m < n

n m n = mq + r, q ∈ ℕ*, r ∈ {0,1,...,n − 1}
x m n r ≠ 0

x −
1

q + 1
m′￼
n′￼

, n′￼∈ ℕ*, m′￼∈ {1,...,m − 1}

x =
5
17

x ]0; 1[ x =
m
n

, (m , n) ∈ ℕ*2, m < n

n = mq + r q ∈ ℕ* 0 < r < m

x −
1

q + 1
=

m
n

−
1

q + 1
=

m
mq + r

−
1

q + 1
=

mq + m − mq − r
n (q + 1)

=
m − r

n (q + 1)

m′￼= m − r n′￼= n (q + 1) x −
1

q + 1
=

m′￼
n′￼

0 < m′￼< m

r

∀n ∈ ℕ

mi > 1 x − ∑
k

1
qk + 1

= xi =
mi+1

ni+1

0 < mi+1 < mi mi+1 = m −
i

∑
k=0

rk ni+1 = n0

i

∏
k=0

(qk + 1)
xi < 1

x =
m0

n0
n0 = m0q0 + r0 m1 = m0 − r0

n1 = n0 (q0 + 1)
i i + 1

ni+1 mi+1 ni+1 = mi+1qi+1 + ri+1

xi+1 = xi −
1

qi+1 + 1
=

mi+1

ni+1
−

1
qi+1 + 1

=
mi+1

mi+1qi+1 + ri+1
−

1
qi+1 + 1

=
mi+1 − ri+1

ni+1 (qi+1 + 1)



Ainsi construite, la suite des  est strictement décroissante et minorée (strictement également) par .


L’algorithme se termine quand un  et qu’on peut écrire .


Et donc  s’écrit comme une somme d’inverse d’entiers.


c) L’algorithme a été explicité dans la question précédente, traitons l’exemple proposé.


 et 


 et 


.


On remarque que  et donc l’algorithme est terminé.


Finalement, on peut écrire : .


(mi) 0

mk = 1
mk

nk
=

1
nk

x

x =
5

17
17 = 3 × 5 + 2 = q0 × 5 + r0

x −
1
4

= x1 =
5

17
−

1
4

=
20 − 17

68
=

3
68

=
m1

n1
68 = 3 × 22 + 2 = q1 × 3 + r1

x −
1
4

−
1

23
= x2 =

3
68

−
1

23
=

69 − 68
1564

=
1

1564
=

m2

n2
m2 = 1

5
17

=
1
4

+
1

23
+

1
1564
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