
Bac métropole série S - 1995

Exercice 1

1. On cherche à résoudre 




Le discriminant étant négatif, les 2 solutions vont être complexes :




 et 


Donc les solutions de  sont  et 


2. Le dessin sera ajouté à la question suivante.

3.
a. Par définition de , on a 


Or, 





D’où, 


Ce qui confirme 




b. La rotation de centre  et d’angle  correspond à une multiplication des affixes par .


Donc 


Et 



c. La translation de vecteur  correspond à une addition de  aux affixes.




Ce qui donne 


Et 


z2 − 2z + 2 = 0

Δ = 4 − 8 = − 4 < 0

z1 =
2 + 2i

2
= 1 + i z2 = 1 − i

z2 − 2z + 2 = 0 z1 = 1 + i z2 = 1 − i

N zL − zM = zN − zL

zL − zM = 1 − i + i 3 = 1 + i ( 3 − 1)
zN = 1 + i ( 3 − 1) + 1 − i

zN = 2 + i ( 3 − 2)
O

π
2

i

zA = i zM = 3

zC = i zN = 2 − 3 + 2i

⃗u 2i

zD = zM + 2i = i (2 − 3)
zB = zN + 2i = 2 + i 3
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4.

a. La propriété des milieux dans le plan complexe nous indique qu’il faut prouver 


Or 





Et 


Donc  est le milieu de  et .




b. 


Et donc 


c. Le résultat précédent nous indique que  et  sont orthogonales.

 a donc ses diagonales perpendiculaires qui se coupent en leur milieu.


De plus, on déduit également de la question précédente que  et donc que les diagonales sont de 
même longueur.


Finalement  est un carré.


Exercice 2

Enseignement obligatoire

1.
a. Nommons  la fonction intermédiaire 

Comme ,  est bien définie sur  et dérivable comme composée de fonctions 
dérivables.





b. , donc  est bien définie sur l’intervalle.







Donc 


c. En utilisant le résultat précédente, on peut écrire :





zK =
zD + zB

2
=

zC + zA

2

zC + zA

2
=

2 − 3 + 2i + 3
2

= 1 + i = zK

zD + zB

2
=

i (2 − 3) + 2 + i 3

2
= 1 + i = zK

K [AC] [BD]

zC − zK

zB − zK
=

2 − 3 + 2i − 1 − i

2 + i 3 − 1 − i
=

1 − 3 + i

1 + i ( 3 − 1)
=

i (1 + i ( 3 − 1))
1 + i ( 3 − 1)

= i

zC − zK

zB − zK
= i

(CK ) (BK )
A BCD

K B = KC

A BCD

h x ↦ x2 + 2
∀x ∈ ℝ, x2 + 2 > 0 h ℝ

∀x ∈ ℝ, h′￼(x) =
2x

2 x2 + 2
=

x

x2 + 2

∀x ∈ [0,1], x + x2 + 2 > 0 f

∀x ∈ [0,1], f ′￼(x) =
1 + x

x2 + 2

x + x2 + 2
=

x + x2 + 2

x2 + 2 (x + x2 + 2)
∀x ∈ [0,1], f ′￼(x) =

1

x2 + 2

I = ∫
1

0

1

x2 + 2
d x = [ln (x + x2 + 2)]

1

0
= ln (1 + 3) − ln ( 2)
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Et donc 


2. 


a. 


Ainsi 


b. Procédons comme proposé à une intégration par partie, dans laquelle nous allons dériver  
et primitiver .





Ce qui donne : .


Et donc .


c. En sommant les 2 égalités précédentes, on déduit :




Et donc 


Et 


Exercice 2

Spécialité

1.
a. Remarque : évidemment, normalement on ne fait qu’un des 2 exercices. On ne revient pas sur le 

domaine de définition ou la dérivabilité ici. On reprend juste le résultat (la constante sous la racine ne 
changeant pas le principe). Idem pour la question b)





On trouve : 


D’après le calcul proposé dans l’exercice précédent, on a :  


b. . On reconnaît, à l’intérieur de l’intégrale, une dérivée de forme  dont une 

primitive sera .




Cela nous donne : .





I = ln ( 1 + 3

2 )

J + 2I = ∫
1

0

x2

x2 + 2
d x + 2∫

1

0

1

x2 + 2
d x = ∫

1

0

x2 + 2

x2 + 2
d x = ∫

1

0
x2 + 2d x = K

J + 2I = K

x ↦ x2 + 2
x ↦ 1

K = ∫
1

0
x2 + 2d x = [x x2 + 2]

1

0
− ∫

1

0

x2

x2 + 2
d x

K = 3 − J

2K = 3 + 2I

K =
3

2
+ ln ( 1 + 3

2 )

J = ln ( 1 + 3

2 ) −
3

2

∀x ∈ [0,1], f ′￼(x) =
1

x2 + 1

u0 = ln (1 + 2)

u1 = ∫
1

0

x

x2 + 1
d x

u′￼
2 u

u

u1 = ∫
1

0

x

x2 + 1
d x = [ x2 + 1]

1

0
= 2 − 1

u1 = 2 − 1
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2.
a. Étudions les variations de  :








Or,  et donc .


Finalement, cela confirme que  et que  est décroissante.


Comme inversement, , on a .


Donc  est décroissante et minorée.


Ceci permet de conclure que  est convergente.



b.  ou 


En passant à la racine carrée qui est bien une fonction croissante :  


En passant cette fois à l’inverse, qui est décroissante, .


Cet encadrement permet de déduire un encadrement de  :







Comme , 


On obtient bien 


Par le théorème des gendarmes, 


Remarque : ce résultat n’est pas surprenant, quand ,  tend vers la fonction nulle sur  
et vaut  en . C’est d’ailleurs un exemple classique d’une suite de fonctions continues dont la limite ne l’est 
pas.


3. 


a. 


Ce qui vérifie : 


(un)n⩾0

∀n ∈ ℕ, un+1 − un = ∫
1

0

xn+1

x2 + 1
d x − ∫

1

0

xn

x2 + 1
d x = ∫

1

0

xn+1 − xn

x2 + 1
d x = ∫

1

0

xn (x − 1)

x2 + 1
d x

∀x ∈ [0,1], x − 1 ⩽ 0
xn (x − 1)

x2 + 1
⩽ 0

∀n ∈ ℕ, un+1 − un ⩽ 0 (un)n⩾0

∀x ∈ [0,1],
xn

x2 + 1
⩾ 0 ∀n ∈ ℕ, un ⩾ 0

(un)n⩾0

(un)n⩾0

∀x ∈ [0,1], 0 ⩽ x2 ⩽ 1 1 ⩽ x2 + 1 ⩽ 2

∀x ∈ [0,1], 1 ⩽ x2 + 1 ⩽ 2

∀x ∈ [0,1],
1

2
⩽

1

x2 + 1
⩽ 1

un

∀n ∈ ℕ,
1

2 ∫
1

0
xnd x ⩽ ∫

1

0

xn

x2 + 1
d x ⩽ ∫

1

0
xnd x

∫
1

0
xnd x =

1
n + 1 [xn+1]1

0
=

1
n + 1

∀n ∈ ℕ,
1

(n + 1) 2
⩽ un ⩽

1
n + 1

lim
n→+∞

un = 0

n → + ∞ x ↦ xn [0,1[
1 1

∀n ⩾ 3, un + un−2 = ∫
1

0

xn

x2 + 1
d x + ∫

1

0

xn−2

x2 + 1
d x = ∫

1

0

xn−2 (x2 + 1)
x2 + 1

d x = ∫
1

0
xn−2 x2 + 1d x

∀n ⩾ 3, un + un−2 = In
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Comme proposé dans l’énoncé, intégrons  par parties en primitivant le 1er membre et dérivant le second. 

Ca semble assez naturel car on « cherche » du  au dénominateur et on souhaite « augmenter » les 
puissances de .








Et avec la question précédente, 


Finalement, on trouve bien : 



b. On sait que  est décroissante, donc .


Le résultat demandé se déduit de l’égalité précédente : 


c. On étudie le comportement en , on ne précisera pas les indices pour lesquels les inégalités sont 
valables, on sait qu’on étudie un  « assez grand » pour que ça ne soit pas une préoccupation.


Commençons par utiliser l’inégalité 2, elle nous donne :


 ou 


L’inégalité 1, de son côté, nous indique (pour la partie gauche) : 




On a donc encadré  par 2 quantités qui ont la même limite en .


On conclut : .


Problème :

Partie A

1.
a. Remarque : je ne reviens pas sur la démonstration ici, je pense que c’est un résultat connu du cours, 

encore aujourd’hui. Si besoin, on peut retrouver le résultat rapidement, on connaît le coefficient directeur 
de la droite et un de ses points.




Une équation cartésienne de  est 


De même, une équation cartésienne de  est 


b. 2 droites sont parallèles (ou confondues) si et seulement si elles ont le même coefficient directeur.




D’après la question précédente, cela revient à .


Donc 


2. La première condition  et une réécriture du résultat précédent.


In

x2 + 1
x

In = ∫
1

0
xn−2 x2 + 1d x =

1
n − 1 [xn−1 x2 + 1]

1

0
−

1
n − 1 ∫

1

0
xn−1 x

x2 + 1
d x =

2
n − 1

−
un

n − 1

un + un−2 =
2

n − 1
−

un

n − 1

nun + (n − 1) un−2 = 2

(un)n⩾0
∀n ⩾ 3, un ⩽ un−2

∀n ⩾ 3, (2n − 1) un ⩽ 2

+∞
n

2nun ⩽ 2 +
1

n + 1
nun ⩽

2
2

+
1

2 (n + 1)
n

(n + 1) 2
⩽ nun

nun +∞

lim
n→+∞

nun =
2

2

Ta y = ea (x − a) + ea

Dλ y =
1
λ

(x − λ) + ln (λ)

ea =
1
λ

Ta //Dλ ⇔ λ = e−a

b = e−a
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On veut que les droites soient confondues, donc qu’elles aient la même ordonnée pour toutes abscisses, en 
particulier quand .

En remplaçant  et  dans la première question par  et , on trouve : .

Ceci se réécrit bien .


Et donc  et  sont confondues si et seulement si  et .


Partie B

1. 


a. . Donc en divisant par  qui est forcément non nul, on trouve :





b.  est bien définie et dérivable sur  comme produit de fonctions qui le sont.


On a donc 




Donc  est strictement croissante sur .


Quand  (je considère qu’il n’y a pas besoin d’insister, en cas de doute, on met  en 

facteur au numérateur et au dénominateur) et .


Donc 


c. En complément des éléments de la question précédente, on a .



On en conclut que  est une bijection de  vers .


Ce qui permet d’affirmer que  admet une unique solution  sur .




De plus :  et .


Donc 




2.

a. 


b. On déduit donc que si ,  également.

Comme cette condition est équivalente à «  est solution de (1) », et qu’on a identifié une solution .


on conclut que (1) possède 2 solutions opposées.



c. D’après la question 2 de la partie A, les tangentes communes à  et  sont les  où  vérifie (1)


D’après la question précédente, les 2 tangentes communes à  et  sont  et .


x = 0
x λ 0 e−a −aea + ea = − 1 − a

(a + 1) e−a = a − 1

Ta Db b = e−a (a + 1) e−a = a − 1

f (x) = 1 ⇔
x − 1
x + 1

ex = 1 ex

f (x) = 1 ⇔ e−x =
x − 1
x + 1

f [0, + ∞[

∀x ∈ [0, + ∞[, f ′￼(x) =
x − 1
x + 1

ex +
x + 1 − x + 1

(x + 1)2 ex =
ex

(x + 1)2 (x2 − 1 + 2) =
ex

(x + 1)2 (x2 + 1) > 0

f [0, + ∞[

x → + ∞,
x − 1
x + 1

→ 1 x

ex → + ∞

lim
x→+∞

f (x) = + ∞

f (0) = − 1

f [0, + ∞[ [−1, + ∞[
f (x) = 1 μ [0, + ∞[

f (1,5) ≃ 0,9 f (1,6) ≃ 1,14

μ ∈ [1,5; 1,6]

∀x ∉ {−1,1}, f (x) × f (−x) =
x − 1
x + 1

ex ×
−x − 1
−x + 1

e−x = 1

f (x) = 1 f (−x)
x μ

C Γ Ta a

C Γ Tμ T−μ
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d. 


Partie C

1.
Considérons  :


Par définition de  :  et 


Et finalement 


Si  et donc les coordonnées de  sont  et .


Donc 


Donc Si 




2.
a. On a . Les coordonnées de   sont donc 



b. Par définition de  et d’après les coordonnées de  calculées précédemment, on a bien 


 est la tangente à  en .


En utilisant la question A .2. et la B.2.c,   est tangente à  en  


M′￼′￼(x′￼′￼, y′￼′￼) = S(M′￼)
S x′￼′￼= − x′￼= x y′￼′￼= 1

y′￼
= y

S(M′￼) = M

M ∈ Γ, y = ex M′￼ x′￼= − x y′￼= 1
y

= e−x

M′￼(−x , e−x) ∈ Γ

M ∈ Γ, M′￼∈ Γ

A (μ, eμ) A′￼ A′￼(−μ, e−μ)
T−μ A′￼(−μ, e−μ)

T−μ Γ A′￼

T−μ C B1(eμ, μ)

©antoine.remond.maths@gmail.com

mailto:antoine.remond.maths@gmail.com


3.
a. On sait que les coordonnées de  sont  par définition de ce point.




Et d’après B.1.a.  ou .


Donc 


Les coordonnées de  s’obtiennent de la même manière et  .


Ensuite, on sait que  et donc  


Finalement, les coordonnées de  sont  ou  


b. D’après la question précédente et les coordonnées des 4 points,  est symétrique de  par rapport à 
 et  est symétrique de . 


Rappel : l’image d’une droite par une symétrie axiale est une droite, donc l’image de 2 points suffit à trouver 
l’image d’une droite.


Et donc  et  sont symétriques par rapport à la droite d’équation .


D’après les symétries qui viennent d’être mises en avant,  et  sont perpendiculaires à la droite 
d’équation  et sont donc parallèles.


Ainsi  est un trapèze.


4. Introduisons les points  et  :


On doit calculer la différence entre l’aire du quadrilatère  et l’aire sous la courbe  (qui sera donné 
par l’intégrale de l’exponentielle entre  et . On écrira 


On peut découper  en 1 rectangle et un triangle rectangle.


A A(μ, eμ)

e−μ =
μ − 1
μ + 1

eμ =
μ + 1
μ − 1

A (μ,
μ + 1
μ − 1 )

A′￼ A′￼(−μ,
μ − 1
μ + 1 )

B (e−μ, − μ) B ( μ − 1
μ + 1

, − μ)
B1 (eμ, μ) B1 ( μ + 1

μ − 1
, μ)

B A′￼
y = x A B1

Tμ T−μ y = x

(A′￼B) (A B1)
y = x

A′￼A B1B

C′￼(−μ,0) C(μ,0)

ACC′￼A′￼ Γ
−μ μ 𝒜 = 𝒜1 − 𝒜2

ACC′￼A′￼
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Donc 


.


On conclut donc 

𝒜1 = 2μe−μ +
2μ (eμ − e−μ)

2
= μ (eμ + e−μ)

𝒜2 = ∫
μ

−μ
exd x = [ex]μ

−μ
= eμ − e−μ

𝒜 = 𝒜1 − 𝒜2 = μ (eμ + e−μ) − eμ + e−μ = eμ (μ − 1) + e−μ (μ + 1)
=

μ + 1
μ − 1 (μ − 1) +

μ − 1
μ + 1 (μ + 1) = 2μ

𝒜 = 2μ
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