Bac métropole série S - 1995

Exercice 1

1. Oncherche arésoudre z2—2z+2 =10

A=4-8=-4<0
Le discriminant étant négatif, les 2 solutions vont étre complexes :

2420
= >

=14ietz,=1-i

Donc les solutions de z2 — 2z +2 =0sontz; = 1 +ietz, =1 —i

2. Le dessin sera ajouté a la question suivante.
3.

a. Pardéfinitonde N,onaz; — 273, =2y — 71,

Or,zL—zle—i+i\/§=1+i<\/§—l>
D’ou,zN=1+i<\/§—1>+l—i

Ce qui confirme zy, =2 + i <\/§ - 2>

n
b. La rotation de centre O et d’angle E correspond a une multiplication des affixes par i.

Donczy = izy = \/§

EtZCziZsz—\/g+2l.

c. La translation de vecteur i correspond & une addition de 2i aux affixes.

Ce qui donne zj, = 7y, + 2i =i<2—\/§>

Etzy=zy+2i =2+i/3
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4.
Zp+ 25 _ et 2y

a. La propriété des milieux dans le plan complexe nous indique qu'’il faut prouver zx =

22
Ze + 2—4/342i+4/3
or £ ZA= \/_=1+i=zK
2 2
bt i<2—\/§)+2+i\/§ .
= = 1=z
2 2 K
Donc K est le milieu de [AC] et [BD].
; 1+'< 3-1)
Cfemw _2-V342i-1-i_ 1-\3+i l< i(v3 ) .
. = = = =1
B~ 2K 2+i\/§—1—i 1+i<\/§—1> 1+i<\/§—1>
ic—Z
Et donc K=l
i — ZK

c. Le résultat précédent nous indique que (CK) et (BK ) sont orthogonales.
A BCD a donc ses diagonales perpendiculaires qui se coupent en leur milieu.

De plus, on déduit également de la question précédente que KB = KC et donc que les diagonales sont de
méme longueur.

Finalement A BCD est un carré.

Exercice 2
Enseignement obligatoire

1.

a. Nommons % la fonction intermédiaire x — \/x2 + 2

Comme Vx € R, x2+ 2 > 0, h est bien définie sur R et dérivable comme composée de fonctions
dérivables.

Vx eR, h(x) =

2x X
022 Vart2

b. Vx € [O,l] , X+ x2+2>0, donc f est bien définie sur l'intervalle.

X

I+ 5
Vx € [O,l],f’(x): Vx2+2 _ X+vVx +2

X 4+/x242 \/m<x+\/xz—+2>

Donc Vx € [0,1], f'(x) =

1
/a2

c. En utilisant le résultat précédente, on peut écrire :

Izjoﬁdx= lln<x+\/x2+2> 0=ln<1+\/§>—ln<\/§>
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1+4/3
Etdoncl =In <—\/_)

NG

2.
1 2 1 1 1X2+2 1 >
a. J+2l=| ——dx+2| ——dx =| ——dx = x“+2dx =K
0Vx2+2 0vVx2+2 0Vx2+2 0
AinsiJ+2I =K

b. Procédons comme proposé a une intégration par partie, dans laquelle nous allons dériver x — x2 42
et primitiver x — 1.

1 1 1 2
Ce qui donne:K:J' x2+2dx = [x\/x2+2] —J x—dx.
0 0 Jo4/x2+2

EtdoncKz\/g—J.

c. Ensommant les 2 égalités précédentes, on déduit :
2K =+/3 +21

EtdoncK=£+ln M
Y

=) -8

Exercice 2

Spécialité

1.

a. Remarque : évidemment, normalement on ne fait qu’un des 2 exercices. On ne revient pas sur le

domaine de définition ou la dérivabilité ici. On reprend juste le résultat (la constante sous la racine ne
changeant pas le principe). Idem pour la question b)

On trouve : Vx € [0,1], fx)=

1
Ve

D’apres le calcul proposeé dans 'exercice précédent, on a :|uy = In (1 + \/E)

1 ’
u
b. uy = J ——————d x. On reconnait, a l'intérieur de I'intégrale, une dérivée de forme dont une
0vVx2+1 2/u

primitive sera \/; .

1 1
Celanousdonne:ulzJ' de: [\/x2+1] :\/5—1.
0VxZ+1 0

u1=\/§—1
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2.

a. Etudions les variations de (un) 50"
nz

1 X 1 X" lxn+1 — X" lxn (x—1)
VneN,unH—un:J —dx—J —dx=J —dx:J Y Zdx
0Vx2+1 0VxZ+1 0 Vx2+1 0 VxZ+1

x"(x—=1)
Or, Vx € [O,l], x—1<0etdonc———— < 0.

Ve

Finalement, cela confirme que Vn € N, u, .| —u, < 0 et que (un) , &St décroissante.

nz

n

X
Comme inversement, Vx € [0,1], ———2>0,onaVneN,u,>0.
2
x>+ 1
Donc (un) est décroissante et minoree.
n=0

Ceci permet de conclure que (un) 0 est convergente.
nz

b. Vx € [0,1],0<x*<loul x*+1<2

En passant a la racine carrée qui est bien une fonction croissante : [Vx € [O,l] , 1 <y x2+1< \/5

1
En passant cette fois a 'inverse, qui est décroissante, Vx € [0,1], < <1

Cet encadrement permet de déduire un encadrement de u,, :

1 1 1 X" 1
Vn eN, —J x"dx < J —dx SJ x"dx

V2 0VxZ+1

0 0
1
1 1
CommeJ x”dxz—[x”+1]l= :
0 n+1 0 n+1
On obtient bien Vn € N < < !
n obtient bien Vn , ———— < u, <
n+1y2  ontl

Par le théoréme des gendarmes, lim u, =0
n—+oo

Remarque : ce résultat n’est pas surprenant, quand n — + oo, x — x" tend vers la fonction nulle sur [0,1 [

et vaut 1 en 1. C’est d’ailleurs un exemple classique d’une suite de fonctions continues dont la limite ne I'est
pas.

3.

1 X" 1 xn—2 lxn—Z (X2 + 1) 1 . .
a Vn23, u,+tu, ,=| ——dx+| ——dx=| ————dx = | x"""Vx“+1ldx

0Vxz+1 0VxZ+1 0 VxZ+1

Ce qui vérifie: Vn = 3, u, +u,_, =1

n
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Comme proposé dans I'énoncé, intégrons /, par parties en primitivant le 1er membre et dérivant le second.

Ca semble assez naturel car on « cherche » du \/x2 + 1 au dénominateur et on souhaite « augmenter » les
puissances de x.

1 1

1 1 1 2 u

In=I x"2/x? + 1dx = [x”'l x2+1] — J vl gy = \/_ -—
0 n—1 o n—1

2 u
Et avec la question précedente, u, + u,_, = \/— - =
n—1 n-1

Finalement, on trouve bien : nu, + (n — 1) u,_, = \/5

b. On sait que (un) 0 est décroissante, donc Vn > 3, u, < u,_,.
nz

Le résultat demandé se déduit de I'égalité précédente : Vn > 3, (2n — 1) u, < \/5

c. On étudie le comportement en + 0o, on ne précisera pas les indices pour lesquels les inégalités sont
valables, on sait qu’on étudie un n « assez grand » pour que ¢a ne soit pas une préoccupation.

Commencgons par utiliser I'inégalité 2, elle nous donne :

1 2 1
2nun<\/§+ \/_+
n+1 2 2(n+1)

ounu, <

L'inégalité 1, de son c6té, nous indique (pour la partie gauche) :

; <nun
(n +1)4/2

On a donc encadré nu,, par 2 quantités qui ont la méme limite en +oo.

2
Onconclut: lim nu, = i
n—+oo 2

Probleme :

Partie A

1.

a. Remarque : je ne reviens pas sur la démonstration ici, je pense que c’est un résultat connu du cours,

encore aujourd’hui. Si besoin, on peut retrouver le résultat rapidement, on connait le coefficient directeur
de la droite et un de ses points.

Une équation cartésienne de 7, esty = e (x — a) + e

1
De méme, une équation cartésienne de D, esty = 7 x=AD+In)

b. 2 droites sont paralléles (ou confondues) si et seulement si elles ont le méme coefficient directeur.

1

D’aprés la question précédente, cela revient a e = E

Donc T,//D;, & A =e™

2. La premiére condition b = ¢~? et une réécriture du résultat précédent.
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On veut que les droites soient confondues, donc qu’elles aient la méme ordonnée pour toutes abscisses, en
particulier quand x = 0.

En remplagant x et A dans la premiére question par O et e™¢, on trouve : —ae“ + e’ = -1 —a.

Cecise réécritbien(a + 1)e ™ * =a — 1.

Et donc T, et D, sont confondues si et seulementsib = e “et(a+ 1)e ™ =a — 1.

Partie B
1.

a fo=1e

x—1
1 e* = 1. Donc en divisant par e”* qui est forcément non nul, on trouve :

X +

x—1
x+1

)=l e =

b. festbien définie et dérivable sur [0, + oo[ comme produit de fonctions qui le sont.

On a donc
-1 +1-x+1 x x
Vx€[0,+oo[,f’(x)=x ex+x x2 = —° 2(x2_1+2): ¢ :
x+1 x+1) (x+1) x+1)

(x*+1)>0

Donc f est strictement croissante sur [0, + o0 [

X
Quand x = + o0, —1 — 1 (je considére qu'il n'y a pas besoin d'insister, en cas de doute, on met x en
X+

facteur au numérateur et au dénominateur) et ¢* — + 0.

Donc lim f(x) =+ o0

X—>+00

c. En complément des éléments de la question précédente, ona f (0) = — 1.

On en conclut que f est une bijection de [O, + o0 [ vers [— 1,+ [

Ce qui permet d’affirmer que f (x) = 1 admet une unique solution y sur [0, + o0 [

Deplus:f(1,5) ~09etf(1,6) ~ 1,14.

Donc u € [1,5; 1,6]

x—lex —x—le_x_
x+1 —x+1

a. |[Vx & {=1,1}, f(X) X f(=x) =

b. On déduit donc que si f(x) = 1, f(—x) également.
Comme cette condition est équivalente a « x est solution de (1) », et qu’on a identifié une solution 4.

on conclut que (1) posséde 2 solutions opposeées.

c. Daprés la question 2 de la partie A, les tangentes communes a C et I" sont les T, ot a vérifie (1)

D’aprés la question précédente, les 2 tangentes communes a C et I sont Tu et T_ﬂ.
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Partie C
1.
Considérons M"(x",y") = S(M') :

1
Par définitonde S : x" = —x' = xety"=— =y
Et finalement S(M') = M

1

SiM eI,y = e etdonc les coordonnées de M'sontx’ = —xety = — =e™™

Donc M’ (—x, e‘x) el

DoncSiMel, M eI’

2.
a. OnaA (,u, e”). Les coordonnées de|A’ sont donc A’ (—,u, e‘”)

b. Par définition de T_ﬂ et d’aprés les coordonnées de A’ (—/,t, e‘”) calculées précédemment, on a bien

T_ﬂ estlatangente al en A".

En utilisant la question A .2. etla B.2.c, T_, est tangente & Cen B,(e*, )
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3.

a. On sait que les coordonnées de A sont A(u, e#) par définition de ce point.

-1 +1
Etdaprés B.1.a.e™# = ouet = 'u—.
u+1 u—1
+1
Donc A ,u,—'u
u—1
Les coordonnées de A’ s’obtiennent de la méme maniére et| A’ <—,u,
. . _ -1
Ensuite, on sait que B (e Ho— ,u) etdonc|B | ——, —
u+1

Finalement, les coordonnées de B, sont (e”,,u) ou

u+1
B1< ,lu>
u—1

b. D’aprés la question précédente et les coordonnées des 4 points, B est symétrique de A’ par rapport a

y = x et A est symétrique de B,.

Rappel : 'image d’une droite par une symétrie axiale est une droite, donc I'image de 2 points suffit a trouver

I'image d’une droite.

Et donc Tﬂ et T_ﬂ sont symétriques par rapport a la droite d’équation y = x.

D’apreés les symétries qui viennent d’étre mises en avant, (A'B) et (A B;) sont perpendiculaires a la droite

d’équation y = x et sont donc paralléles.

Ainsi A’A BB est un trapéze.

4. Introduisons les points C'(—u,0) et C(u,0) :

On doit calculer la différence entre 'aire du quadrilatére ACC’ A’ et I'aire sous la courbe I" (qui sera donné
par l'intégrale de I'exponentielle entre —p et yi. On écrira o = o | — A,

On peut découper ACC’A’ en 1 rectangle et un triangle rectangle.
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_u, 2u(ef—e™) _
A =2ue ”+f=ﬂ(6”+e )

U
=Q72:J e'dx = [ex]iﬂze”—e_”

—u
Donc&f:Qfl—ﬂzzu(e”+e‘”)—e”+e‘”=e”(,u—1)+e‘”(,u+1)
_pu+1

~1
ﬁ(ﬂ—l) ZT(u+1)=2u.

On conclut donc & = 2u
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