LM250 - Partiel 2012

Exercice 1 :

Il faut étudier les 2 bornes de I'intégrale, car la fonction diverge en 0 et on doit étudier le comportement en
+00.
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On considere I, = J dt (on prend — comme borne supérieur car le cosinus est positif sur

t

™

l'intervalle considéré).
T

_ %cos(t) TL _ %_ T
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Donc 1, converge bien quand € tend vers 0.

En+o00:
Utilisons cette fois

X . X X . . X .
I =J cos (1) Jf = sin (1) +J‘ 2sin (1) Jf = sin (X) B 2 +J‘ 2sin (1) i

s Vi | Vi Y S

/4
(Remarque : la borne inférieure n’a pas d’importance, j'avais pris E dans la premiere partie car c’était un

.3
7 12

point d’annulation de la fonction, j'ai gardé cette borne. N'importe quel autre réel convient pour cette 2eme
/4

partie. Pour la premiere on pouvait prendre n’importe quel réel plus petit que E pour garder le

raisonnement).

dt est absolument convergente.

sin (X) X 2sin (1)
Quand X - + 00, ——— — QO et —

VX 8

t cos (1)

Finalement, on conclut que I = J dt est semi-convergente.
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Exercice 2 :

B

e
a1

B

tan® (t)dt + J

tan®+ V() dr = J tan®" (1) (1 +tan® (t)) dt
0

1. u,=1, +I+1—J
0

0
(Rappel : tan’ = 1 + tan?)

[tan2”+1 (t)](;% —

u, =
2n+1 2n+1

1
2n+1

Donc Vn €N, u, =

2. La suite de terme général remplit les conditions du théorémes d’Abel :

est une suite de réels décroissante

(i) La suite de terme général

(i) Sa limite est 0
(iii) |Z( 1) |

Rappel : les suites décroissantes alternées sont des cas particuliers usuels de ce théoreme.

Donc Z (—1)" u, converge

n
3. Par définition de (un) " Z (- 1)k u;, est une somme téléscopique.
nz
k=0

n
On trouve immédiatement |Vn € N, Z (-1* =1+ "1,
k=0

4. Sur lO;%l, tan(t)<let lim [, =0

n—+4oo
De plus I, = —
eplusl, = —
P 0 4
+o00 _1 k
Donc Z ) E
ok +1 4

Exercice 3 :

1. J, est bien définie en 0, il faut étudier le comportement en + oo

or Y > 0 r"" dt <J+°° dt 1
rVa , _— = .
; 1+ ﬂ-atZ = n-at2 36137750’
+00 dt
DoncJ, = —— converge.
“ L 1 + nof?
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2N

J dt
o 1+ nm)"r?

a
2

IR

2. n2w,=n

a a
Comme proposé, on pose # = n2tdoudu = n2dt

o
n2
Q. a
n2w,_ = nZJ

2
u
0 1+(I’lﬂ')an—an

(ST

1 du __J"T% du
o 1 +mou?

o
2

. a
Donc lim n2w, =J,
n—+oo

n
3. Par larelation de Chasles on a

(n+D)x dt
U, = J

agin2
= 0 1+ tosin?(¢)
(n+D)z dt
Et lim J — =1,
n—+o0 J 1 +t2sin? (1)
400
Donc 2 uy, et I, sont de méme nature.
k=0

(n+1)z dt
4. u, = _—
" J 1 + t2sin? (t)

nnr

Onposes =t —nnetds = dt

J‘” ds J” ds
u, = =
")y 14+ (s +nn)sin?(s +nx) o L+ (s+nn)sin?(s)

Sur [O; JZ'], VhneN, mn)’ <(s+nn)?< ((n + 1)7[)a, donc

J” ds J” ds
a < Ml’l < a .
0 1+ ((n+Dx) sin2(s) o 1+ (nm)*sin(s)

n

OuvneN, v, <u,<v

5. Toutes les quantités considérées sont positives, donc soit elles tendent vers une limite /, soir elles
divergent vers 4+ 0.

Etudions rapidement les différents cas :

. 2 u, diverge, comme Vn € N, u, <v,, Z v, diverge également

. 2 v, diverge, comme Vn € N, v, < u,, donc Z u,, diverge

. Z u, converge vers [, comme Vn € N, v, | < u, Z v, est croissante et majorée par [ + v, donc
converge

. 2 v, converge, comme Vn e N, u, < v, Z u,, est croissante et majorée par [ donc converge

Donc Z u, et Z v, sont de méme nature.

Dy
(S

6. O indi I J di t J d
. On nous indique que — = ‘ etw = | ———M
2 o 1+ mn)*sin?(1) "oy 14+ () 2
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2 sin(t)
Et comme — <
T 1t

2
<1, —t <sin(t) < t, on peut encadrer :
T

v, 5
VnEN,wn<7<Mw

n

(Remarque : j’ai passé une ligne de calcul sans grande valeur ajoutée, on est toujours sur le méme principe
d’encadrements d’inverses).

7. Comme pour la question 5, une des sommes ne peut diverger sans que l'autre diverge

Z v, et Z w, sont de méme nature.

8. Enreprenant la question 2, on a le critere de converge pour Z w, et donc finalement de [, :

1 a
Il faut que J, Z — converge et donc — > 1
n2 2

On conclut finalement que 1, converge si a > 2.
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