
LM250 - Partiel 2012 
Exercice 1 : 

Il faut étudier les 2 bornes de l’intégrale, car la fonction diverge en  et on doit étudier le comportement en 

.


En  :


On considère  (on prend  comme borne supérieur car le cosinus est positif sur 

l’intervalle considéré).





Donc  converge bien quand  tend vers .


En  :

Utilisons cette fois 




(Remarque : la borne inférieure n’a pas d’importance, j’avais pris  dans la première partie car c’était un 

point d’annulation de la fonction, j’ai gardé cette borne. N’importe quel autre réel convient pour cette 2ème 
partie. Pour la première on pouvait prendre n’importe quel réel plus petit que  pour garder le 

raisonnement).




Quand ,  et  est absolument convergente.


Finalement, on conclut que  est semi-convergente.
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Exercice 2 : 


1. 


(Rappel : )







Donc 


2. La suite de terme général  remplit les conditions du théorèmes d’Abel :


(i) La suite de terme général  est une suite de réels décroissante


(ii) Sa limite est 


(iii) 




Rappel : les suites décroissantes alternées sont des cas particuliers usuels de ce théorème.


Donc  converge




3. Par définition de ,  est une somme téléscopique.


On trouve immédiatement  


4. Sur  et 




De plus 


Donc 


Exercice 3 : 

1.  est bien définie en , il faut étudier le comportement en 




Or .


Donc  converge.
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2. 


Comme proposé, on pose  d’où 







Donc 


3. Par la relation de Chasles on a 





Et 


Donc  et  sont de même nature.


4. 


On pose  et 





Sur , donc 





Ou 


5. Toutes les quantités considérées sont positives, donc soit elles tendent vers une limite , soir elles 
divergent vers .


Étudions rapidement les différents cas :


•  diverge, comme ,  diverge également


•  diverge, comme , donc  diverge


•  converge vers , comme ,  est croissante et majorée par  donc 
converge


•  converge, comme ,  est croissante et majorée par  donc converge


Donc  et  sont de même nature.


6. On nous indique que  et 
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Et comme , on peut encadrer :


  


(Remarque : j’ai passé une ligne de calcul sans grande valeur ajoutée, on est toujours sur le même principe 
d’encadrements d’inverses).


7. Comme pour la question 5, une des sommes ne peut diverger sans que l’autre diverge


 et  sont de même nature.


8. En reprenant la question 2, on a le critère de converge pour  et donc finalement de  :




Il faut que  converge et donc 


On conclut finalement que  converge si .
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