Exercice 243 :

Lemme de Riemann-Lebesgue

Soient a et b deux réels tels que a < b et f une application définie sur [a, b] , & valeurs réelles, dérivable et
a dérivée continue.

b b
Pour 1 € R¥, démontrer que Jf(t)sm(u)dz <% |f(a)|+‘f(b)|+J £ di

b
En déduire que lim J f@sin(At)dt =0

A—>+0 a

Solution :
On va procéder a une intégration par partie (on y pense tout de suite (enfin ou pas tout de suite, mais ¢a doit

venir) en voyant les valeurs de f aux bornes considérées et une intégrale sur f’ + un réflexe qu’on doit avoir/
acqueérir sur les fonctions trigonométriques, on en reparle en dessous !).

Pour cette intégration par partie, on va dériver f (les propriétés données a cette fonction en hypothése nous
permettent de le faire sans souci) et donc intégrer la fonction x — sin (4x), dont une primitive est

1
X — Ecos (1 x). (Attention a ne pas oublier le « - » dans la primitive. On voit apparaitre le 7 qui nous

encourage dans cette voie).
b 1 b b
On adonc: J f@)sin(At)dt = [—If (t)cos (xlt)l - J' - Icos A f'(r)dt

b
- % <f (a@)cos (Aa) —f (b) cos (ﬂb)) + %J cos (M) f' () dt

En prenant la valeur absolue de cette égalité et en utilisant I'inégalité triangulaire.
Rappels :

. Pour les soustractions, on peut utiliser « brutalement » |a - b| = |a + (-b) | < lal + |b | Cest
souvent (et malheureusement) trop large cependant

*  On va utiliser la propriété « de base » des fonctions trigonomeétriques (ici pour cosinus, mais aussi vrai
évidemment pour sinus) : Vx € R, |c0s (x)| <1

» Linégalité triangulaire s’applique sur les intégrales (qu’on peut voir comme la limite d’une somme d’aires
de rectangles)

b b
J f@)sin(At)dt J cos (At)f' (¢)dt

< % [ |f (a)cos (la)| + ‘f (b) cos (/Ib) | +

1 b
<= lf @] + ‘f (b) | +j |cos a0)f ()] dit

Et finalement :

b 1 b
Jf(t)sin(/lt)dt <7 |f(a)|+‘f(b)‘+J

£ dt

La 2éme question est immédiate, les 3 éléments de la somme étant indépendants de A et on conclut bien

b
que lim J f@)sin(At)dt = 0.

A—=+o0

Probleme 1 :
Calcul de £ (2).

1. a) Pour n dans N*, calculer I
0

/ T

tcos (nt)dt et J t*cos (nt)dt
0
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T

1
b) Déterminer deux constantes réelles a et b telle que : Vn € N*, J (at2 + bt) cos (nt)dt = —-
n

0
n
2. Pourndans N* ettdans R, soit C, (t) = 2 cos (kt).
k=1
. 2n+1
sin < > t>
Montrer que pour n dans N* et  dans R non multiple entierde 27 : C, () = — — + ————

2sin (é)

t> dtou ¢ et une

N1 72 (T C(2n+1
3. Déduire de ce qui précéde que Vn € N*, 2 = r3 + | @ ()sin
k=1 0

fonction définie et continue sur [0,7[] que l'on précisera.

4. On admet que @ est dérivable sur [0,7[] et que sa dérivée est continue. Montrer en utilisant I'exercice

/2
243 (Lemme de Riemann-Lebesgue) que { (2) = e

Solution:

1. a) Nous allons utiliser des intégration par parties pour cette premiére question :

Jﬂtcos (nt)dt = [ltsin (nt)l —ljﬂ
n 0o N

1 P |
sin(nt) = — [cos (nt)] =—cos(nr)——
0 o n2 0 p2

n2

T

J t*cos (nt)dt = l [tzsin (nt)]ﬂ —EJ
n 0 n

2 - 2 ("
tsin (nt)dt = — [tcos (nt)] +—J cos (nt)dt
0 0 n? 0 nl

2z 2 x_ 2m
= ﬁcos (nm) + P [sm (nt)]O = ?cos (nm)

b) D’apres la question précédente :
T

2 b b 1
(az‘2 + bt) cos (nt)dt = ﬂcos (nm)+ —cos(nm) —— = — <(2a7r + b) cos (nm)— b)
0 n? n? n? n?

On veut donc :
{2an+b =0 a =

et finalement 2r

—b=1 b=-1

2. Rappel : pour les sommes trigonométriques, il est souvent intéressant d’utiliser les complexes, en
particulier a I'aide de la formule de Moivre (cos (x)+isin (x)) =cos (nx)+isin (nx), qui se
démontre immédiatement avec I’écriture exponentielle, dont on va se servir tout de suite)

n

Introduisons une autre somme : S, (f) = Z sin (kt) et calculons C,, (1) + i, ()
k=1

n n n
C,(t)+iS, ()= Z cos (kt) + iz sin (kt) = 2 cos (kt) +isin (kt)
k=1 k=1 k=1
En passant a la forme exponentielle :
_ (1 . (sl
‘ n " 1= eint it 1— eint el% _ el(n-i-j)t . el% _ el(n+7>t
Cn(t)+lSn(t)=Ze”=e”—il=e2 — — = =i
k=1 I-e e'7—¢'2 —2isin (é) 2sin <é>

t est non multiple entier de 27, donc el # 1, ce qui justifie la division.
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. t . 2n+1 . 2n+1
—szn(5>+sm< > t) 1 szn( > t>

On extrait la partie réelle : C, () = = - 5 +
. t . t
2sm<3> 2sin <5>
3. Onva chercher a utiliser les résultats des questions 1 et 2 pour arriver au résultat. |l faut donc s’assurer
que la fonction C, est intégrable sur]O,ﬂ]

. (2041
sm( s t) ntl,
2 2

EnQ,onasin (x) ~ x etdonc ~ = 2n + 1, ce qui nous assure l'intégrabilité

t
2sin <é> 2

(vocabulaire a confirmer...)

2 i ) i . /2 1 Sin(zn;1t>
——t cos(kt = ——t cos(kt): SR [ T S —
2r P P 2r 2n 2 dsin (é)

On va intégrer entre O et 7 et on peut intervertir la somme et l'intégrale.

On décompose les éléments pour ne pas surcharger 'écriture !

T on 2 n n 2 n
JZ t——t c0s(kt)dt=ZJ ;—ﬂ—t cos(kt)dt=Zi(cerésultatestlebutdela

2
0 k=1 2n k=10 k=1
question 1)
1 J” = (i = 1 [# 2] 1  x? B > _ n?
2 ), 2z 2|6z 20_ 2\6z 2 /) 4 12 6
. 2n+lt
s e 7 (2n+1 2 1
— —t|————Ldt=| ¢ @)sin| ——t)dtavecp t) = — -t | x —.
o \ 27 2sin (é) 0 2 2m 2sin <%>

On est content de ne pas avoir a étudier plus en détail la fonction ¢ ! On vérifie tout de méme qu’elle peut
étre prolongée en 0 car elle n'y est pas définie.

Avec I'équivalence déja utilisée pour sinus, on trouve : lim ¢ () = — 1, ce qui nous permet de confirmer les
t—0

hypothéses sur @.

_ N g o (2n+1
Finalement, on trouve : Vn € N*, —=—+4| @ @)sin t)dt.
k2 6 0 2
k=1
4. En faisant tendre n vers + 00, on se retrouve dans la situation de I'exercice 243 sur l'intégrale

. d (2n+1
« résiduelle » etdonc lim @ (t)sin > t)dt =0.

+00 2

R T
Et on conclut ce probléme : E —_ =
Py k2 6
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