
Exercice 36 :

Soit . Donner une expression simple des n premiers nombres impaires : .


Solution :

Nommons : .







Suite à cette initialisation, prouvons par récurrence que .


En supposant à propriété vraie au rang , étudions le rang  :


.


Donc .


Exercice 37 :

Soit  une suite réelle. On suppose que .


Calculer .


Solution :

Réécrivons la somme considérée : .


Et on reconnaît : .


On conclut : .


Exercice 38 :

Table de Pythagore. Soit . On trace la table des multiplications des entiers de  à . On obtient donc 
un carré de  nombres entiers. Quelle est la moyenne de ces nombres ?


Solution :

Réfléchissons par ligne.


La 1ère ligne (multiplication par ) correspond donc aux  entiers considérés.

La moyenne de cette ligne (notons ces moyennes ) est donc : 

.
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Les autres lignes sont des multiples de cette première ligne. Et on a directement .


Finalement, la moyenne 


Exercice 39 :

Soit . Pour , soit . Montrer que .


Solution :

Développons l’écriture : 

On a donc : 


En soustrayant les 2 lignes :  (les autres termes s’annulant).


D’où on tire : 


Comme , , ce qui termine la démonstration.


On conclut finalement .


Exercice 40 :

a) En utilisant la formule de la progression géométrique et la dérivation, calculer pour  réel et  dans  

. On distinguera la cas .


b) Si , calculer la limite de la somme précédente lorsque  tend vers .


Solution :

a) Notons .


On choisit .


On sait déjà (exercice précédent si besoin) que .


Par ailleurs, en dérivant termes à termes 

.


Et avec le résultat de la somme, 
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En reprenant les 2 expressions : 


En changeant d’indice :





Pour , 


b) .


Exercice 41 :

On pose pour  dans  : . Simplifier  et en déduire la monotonie de 


Solution :







On déduit donc que la suite  est décroissante.
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