
Remarque : dès qu’on doit étudier le comportement d’une fonction (voir d’une suite définie à partir d’une 
fonction), il est intéressant de regarder le graphique de la fonction considérée à la calculatrice ou Géogébra !


Exercice 122 :

Trouvez la limite en  des fonctions :


a : , b : , c : , d : 


e : , f : , g : 


Solution :

a : En , ,  et 


b : En , , ,   et 


c : En , , , , 


d :  en , 


e :  en , 


f : On pose  et . En ,  et par croissance comparée, 




Remarque : je pense qu’il n’est pas nécessaire d’aller plus loin dans le cadre de cet exercice de révision, si 

on veut aller plus loin dans la démonstration de la limite en  de , on peut étudier les 

variations de la fonction  pour , on divise ensuite par  et on aboutit sur une 

comparaison entre  et .


g : , en , 


Exercice 123 :

Trouvez la limite en  des fonctions :


a :  , b : , c : , d : 


Solution :


a : en , ,  et 


+∞

x ↦ e− x x ↦
x + 7
4x + 3

x ↦
x2 + 5
x3 − 1

x ↦
sin (x)

x

x ↦ cos (x2) e−x x ↦
ln (ln (x))

ln (x)
x ↦ (2 + sin (x)) x

+∞ x → + ∞ − x → − ∞ e− x → 0

+∞
x + 7
4x + 3

=
x (1 + 7

x )
x (4 + 3

x )
=

1 + 7
x

4 + 3
x

1 +
7
x

→ 1 4 +
3
x

→ 4
x + 7

4x + 3
→

1
4

+∞
x2 + 5
x3 − 1

=
x2 (1 + 5

x2 )
x2 (x − 1

x2 )
=

1 + 5
x2

x − 1
x2

1 +
5
x2

→ 1 x −
1
x2

→ + ∞
x2 + 5
x3 − 1

→ 0

sin (x) ⩽ 1 +∞
sin (x)

x
→ 0

cos (x2) ⩽ 1 +∞ cos (x2) e−x → 0

X = ln(x)
ln (ln (x))

ln (x)
=

ln (X )
X

+∞ X → + ∞

ln (ln (x))
ln (x)

→ 0

+∞ x ↦
ln (x)

x
x ↦ ln (x) − 2 x x ⩾ 1 x

ln (x)
x

2

x

1 ⩽ 2 + sin (x) ⩽ 3 +∞ (2 + sin (x)) x → + ∞

0

x ↦
cos (ex)
2 + ln (x)

x ↦
ln (x)

x
x ↦ xln (x) x ↦ xln (x)

0 cos (ex) → cos (1) 2 + ln (x) → − ∞
cos (ex)
2 + ln (x)

→ 0
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b : en , ,  et 


c : Remarque : comme pour l’exercice précédent, je pense qu’on peut se contenter du résultat classique et à 
connaitre de croissances comparées. Pour aller plus loin, on utilise le résultat en  vu ci-dessus, et on 

considère si  et une propriété à garder en tête : .


En , .


d : On pose  et on écrit : .


Donc, en , .


Exercice 124 :

Trouver la limite en  des fonctions :


a : , b : .


Solution :

a : La fonction « partie entière » n’est pas franchement pratique à manipuler, on va utiliser l’encadrement qui 
la définit (en espérant que cela nous suffise pour conclure !)

On sait que .


En , on peut diviser par  sans problème donc  qu’on peut également écrire : 

.


Donc  quand .


b : Si on « reformule » l’expression de la fonction (on est toujours au voisinage de , donc pas de 

problème pour la mise en facteur) : 


Sans pouvoir conclure directement par l’utilisation d’un développement limité qui ne doit pas être au 
programme de terminale, on utilise l’approximation fournie par la fonction dérivée au voisinage de  (quand 

, . On considère  et la fonction ) : 




Qu’on réintègre dans l’expression précédente 




D’où .


Et on conclut :  quand .


Exercice 125 :

Pour , soit 


0 ln (x) → − ∞
1

x
→ + ∞

ln (x)

x
→ − ∞

+∞

x → 0,
1
x

→ + ∞ ln ( 1
x ) = − ln (x)

0 xln (x) → 0

X = x xln (x) = Xln (X2) = 2Xln (X )
0 xln (x) → 0

+∞

x ↦
⌊x⌋
x

x ↦ x − x2 − x − 1

x ⩽ ⌊x⌋ < x + 1

+∞ x
x
x

⩽
⌊x⌋
x

<
x + 1

x
1 ⩽

⌊x⌋
x

< 1 +
1
x

⌊x⌋
x

→ 1 x → + ∞

+∞

x − x2 − x − 1 = x (1 − 1 −
1
x

−
1
x2 )

0
x → + ∞

1
x

→ 0 X =
1
x

+
1
x2

X ↦ 1 + X

1 −
1
x

−
1
x2

∼
1
2 (−

1
x

−
1
x2 ) + 1

x − x2 − x − 1 = x (1 − 1 −
1
x

−
1
x2 ) ∼ x (1 −

1
2 (−

1
x

−
1
x2 ) − 1)

x − x2 − x − 1 ∼
1
2

+
1

2x

x − x2 − x − 1 →
1
2

x → + ∞

x ∈ ℝ*+ f (x) = sin ( 1
x )
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a) Tracer le graphe de . Quelle est la limite de  quand  tend vers .

b) La fonction a-t-elle une limite en  ?

c) Quelle est la limite de  quand  tend vers  ?


Solution :

a)


Quand  et donc .


b) En , la fonction sinus n’a pas de limite, donc  n’en a pas en .


c)  et  en .


Exercice 126 :

Trouver la limite (finie ou infinie) des suites définies par les formules suivantes :








Solution :

Je n’insiste pas ici, les différents ont été abordés précédemment, je pense que les réécritures suffisent voir 
rien du tout (comme  ou 








f f (x) x +∞
0

x f (x) x 0

x → + ∞,
1
x

→ 0 f (x) → 0

+∞ f 0

−1 ⩽ sin ( 1
x ) ⩽ 1 xsin ( 1

x ) → 0 0

an =
2n + 5
6n + 7

, bn =
n2 − 5n + 6

n n
, cn =

5 + 3sin2 (n)

n + 2 + 3
, dn = n + cos (n) − n

en = − 2n2 + (−1)n, fn = n − sin (2n)2 − 7, gn =
1 + 5sin3 (n)

3n − 7 n + cos (n)

cn en

an =
2n + 5
6n + 7

=
2n (1 + 5

2n )
6n (1 + 7

6n )
=

1 (1 + 5
2n )

3 (1 + 7
6n )

→
1
3

bn =
n2 − 5n + 6

n n
=

n n ( n − 5

n
+ 6

n n )
n n

= n −
5

n
+

6

n n
→ + ∞
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Exercice 127 :

Calculez les limites, en utilisant éventuellement les taux d’accroissement :


Quand  tend vers  : .


Quand  tend vers  : .


Quand  tend vers  : .


Solution :

On a bien à faire à des formes indéterminées : «  » et «  » pour le dernier.


• Quand  tend vers  :

 et on reconnaît la dérivée de la fonction cosinus en , donc 




Pour la 2ème, on va « forcer » l’apparition de la dérivée : 


Donc 


Là encore, on va transformer l’écriture pour faire apparaître une fraction de taux d’accroissements !

Ce qui va être écrit est valable uniquement , valeur pour laquelle la fonction n’est de toute façon pas 
définie.


.


Passée cette première étape, on utilise la même astuce que précédemment :


.


Et finalement 


• Quand  tend vers  :

Pas de piège pour cette fonction, comme , on a directement :


cn =
5 + 3sin2 (n)

n + 2 + 3
→ 0

dn = n + cos (n) − n = n ( 1 +
cos (n)

n
− 1) ∼ 2 n

cos (n)
n

→ 0

en = − 2n2 + (−1)n → − ∞

fn = n − sin (2n)2 − 7 → + ∞

gn =
1 + 5sin3 (n)

3n − 7 n + cos (n)
=

1 + 5sin3 (n)

n (3 − 7

n
+ cos(n)

n )
→ 0

x 0
cos (x) − 1

x
,

sin (5x)
x

,
ln (1 + 2x)

sin (4x)

x 1
ln (x)
x − 1

x +∞ xln (1 +
2
x )

0
0

+∞ × 0

x 0
cos (x) → 1 0
cos (x) − 1

x
→ cos′￼(0) = sin (0) = 0

sin (5x)
x

= 5 ×
sin (5x)

5x
sin (5x)

x
→ 5 × sin′￼(0) = 5 × cos (0) = 5

x ≠ 0

ln (1 + 2x)
sin (4x)

=
x
x

×
ln (1 + 2x)

sin (4x)
=

ln (1 + 2x)
x

×
x

sin (4x)

ln (1 + 2x)
x

×
x

sin (4x)
=

2
4

×
ln (1 + 2x)

2x
×

4x
sin (4x)

ln (1 + 2x)
sin (4x)

→ 1

x 1
ln(1) = 0

©antoine.remond.maths@gmail.com

mailto:antoine.remond.maths@gmail.com


 (Rappel )


• Quand  tend vers  :


Posons , qui lui tend donc vers .


 et on reconnaît à nouveau un taux d’accroissement :


Comme , .


Exercice 128 :

(Une formule de Viète) Soit . Pour , soit .


a) En utilisation la formule de duplication du sinus, simplifier l’expression de , déterminer la limite de la 
suite 


b) Pour , soit  (  radicaux). Et .


Montrer le résultat intermédiaire , puis que .


(Cette formule pour  a été découverte par Viète en 1593)


Solution :

Remarque : l ‘énoncé du poly fait référence aux exercices 105 et 106, mais comme je ne les ai pas encore 
fait au moment de faire celui-ci, je propose de tout traiter ici).


a) Rappel :  et donc .

Si on « enchaîne » les formules de duplication, on trouve :


.


Montrons par récurrence que 


C’est évidemment la formule initialisée ci-dessus, montrons en l’hérédité en supposant que la formule est 
vraie au rang  et étudions le rang  :


A partir de la formule :  et en l’intégrant dans la formule donnée 

par l’hypothèse de récurrence, on obtient directement le résultat voulu,  

, ce qui conclut la démonstration.


Ainsi .


Finalement,  ou pour  .


Si ,  (donc la limite en  est ) et i , et  ou , 
 (donc il n’y a pas de limite en ).


ln (x)
x − 1

→ ln′￼(1) = 1 ln′￼(x) =
1
x

x +∞
X =

1
x

0

xln (1 +
2
x ) = 2

ln (1 + 2X )
2X

lim
x→0

ln (1 + x)
x

= 1 xln (1 +
2
x ) → 2

x ∈ ℝ n ∈ ℕ Pn (x) =
n

∏
k=1

cos ( x
2k )

Pn
(Pn (x))n⩾1

n ∈ ℕ* un = 2 + 2 + . . . + 2 n vn =
n

∏
k=1

uk

∀n ∈ ℕ*, un = 2cos ( π
2n+1 ) vn

2n
→

2
π

π

sin (a + b) = sin (a) cos (b) + cos (a) sin (b) sin (2x) = 2sin (x) cos (x)

sin (x) = 2sin ( x
2 ) cos ( x

2 ) = 22sin ( x
22 ) cos ( x

22 ) cos ( x
2 )

∀n ∈ ℕ*, sin (x) = 2nsin ( x
2n )

n

∏
k=1

cos ( x
2k )

n n + 1

sin ( x
2n ) = 2sin ( x

2n+1 ) cos ( x
2n+1 )

sin (x) = 2n+1sin ( x
2n+1 )

n+1

∏
k=1

cos ( x
2k )

∀n ∈ ℕ*, sin (x) = 2nsin ( x
2n )

n

∏
k=1

cos ( x
2k )

∀n ∈ ℕ*, sin (x) = 2nsin ( x
2n ) Pn (x) x ≠ 0[π] Pn (x) =

sin (x)

2nsin ( x
2n )

x = 0[2π] Pn(x) = 1 +∞ 1 x = π [2π] n = 2k n = 2k + 1
Pn(x) = (−1)k +∞
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Pour les autres valeurs de  (en particulier ), on peut écrire 




Pour l’opérande de droite, on reconnaît l‘inverse du taux d’accroissement de sinus en 0 (en posant ) 

et .


Donc 


b) Montrons le résultat proposé par récurrence.


Pour  : , donc .


Supposons le résultat vrai pour le rang  et étudions le rang  :


D’après la formule de duplication : .


En intégrant l’hypothèse de récurrence, 

 (  radicaux).


Donc (le cosinus d’une valeur entre  et  étant positif) :  

(  radicaux).


Ce qui termine la preuve de l’hérédité et donc que .


On peut écrire : . 


Comme , avec la question précédente on trouve immédiatement .


x x ≠ 0
Pn (x) =

sin (x)

2nsin ( x
2n )

=
sin (x)

x
×

x

2nsin ( x
2n )

X =
x
2n

sin′￼(0) = cos(0) = 1
lim

n→+∞
Pn (x) =

sin (x)
x

n = 0 cos ( π
2 ) =

2
2

u0 = 2 = 2cos ( π
20+1 )

n n + 1

cos ( π
2n+1 ) = 2cos2 ( π

2n+2 ) − 1

2cos2 ( π
2n+2 ) =

2 + 2 + . . . + 2

2
+ 1 =

2 + 2 + 2 + . . . + 2

2
n

0
π
2

2cos ( π
2n+2 ) = 2 + 2 + 2 + . . . + 2

n + 1

∀n ∈ ℕ*, un = 2cos ( π
2n+1 )

vn = 2nPn ( π
2 )

sin ( π
2 ) = 1

vn

2n
→

2
π
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