
Exercice 209 :

L’inégalité de Young

Soit .


a) Montrer qu’il existe un unique réel  (que l’on appelle parfois exposant conjugué de ) tel que 

. Vérifier que . Déterminer  pour  et .


b) On fixe  dans . Étudier les variations de la fonction  définie par 


c) Conclure que .


Solution :

a) Procédons par analyse / synthèse :





Donc, si  existe,  et est unique.





A l’inverse, .


Donc 


Pour .


Pour .


b) 


 est dérivable comme fonction polynomiale et 


Donc  est décroissante entre , puis croissante jusqu’en .


De plus, 


Et , qui est donc le 

minima de la fonction.




c) On déduit de la question précédente .


Ce qui permet de conclure .
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Exercice 231 :

L’inégalité de Hölder pour les intégrales


Les notations  sont celles de l’exercice 209 (ie. , ) sur l’inégalité de Young, 

dont on utilise le résultat (mais on a fait l’exercice avant !).

Soient  et  deux réels tels que ,  et  deux fonctions continues de  dans . On se propose de 

démontrer l’inégalité de Hölder : 


(Pour , on retrouve l’inégalité de Cauchy-Schwartz)


a) En utilisant l’inégalité de Young, montrer que, pour  dans  :





b) Déterminer le minimum de la fonction :





c) Conclure


Solution :

On supposera que  et  sont non nulles sur , sinon le résultat recherché est évident.


a) Considérons l’inégalité de Young avec  et  avec , on peut écrire :





Or en intégrant sur  et en utilisant l’inégalité triangulaire :





Donc 


b) La fonction  est bien dérivable sur  et pour  dans  :





 est elle-même croissante comme somme de fonctions croissantes sur  (  est 

décroissante, donc son opposée est croissante).

De plus  et 


 est donc décroissante puis croissante avec un minimum quand sa dérivée s’annule, donc quand :
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La valeur minimale de  est donc : 







Or,  et « symétriquement », .


Donc 





Donc  est donc décroissante puis croissante avec un minimum de 




c) En reprenant cette valeur minimale dans l’inéquation de la question a), on obtient donc l’inégalité de 
Hölder recherchée :
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