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Exercice 1

Partie I


1. a) Soit 











On conclut que 


b) De la question précédente on déduit 

.


Or, ,


 (On peut vérifier rapidement en dérivant la fonction trouvée)





Et 


Donc l’inégalité devient 


2. Pour , d’après la question précédente :





Et donc 


Par définition de , on écrit 





Et finalement, 


On en déduit 


t ∈ [0; + ∞[
1

1 + t
−

4
(2 + t)2 =

(2 + t)2 − 4 (1 + t)
(1 + t) (2 + t)2 =

4 + 4t + t2 − 4 − 4t
(1 + t) (2 + t)2 =

t2

(1 + t) (2 + t)2 ⩾ 0

1
2 (1 +

1
(1 + t)2 ) −

1
1 + t

=
(1 + t)2 + 2 − 2 − 2t

2 (1 + t)2 =
(1 + t)

2 (1 + t)2 =
1

2 (1 + t)
⩾ 0

∀t ∈ [0; + ∞[,
4

(2 + t)2 ⩽
1

1 + t
⩽

1
2 (1 +

1
(1 + t)2 )

∀x ∈ [0; + ∞[, ∫
x

0

4
(2 + t)2 dt ⩽ ∫

x

0

1
1 + t

dt ⩽ ∫
x

0

1
2 (1 +

1
(1 + t)2 ) dt

∫
x

0

1
1 + t

dt = ln (1 + x)

∫
x

0

4
(2 + t)2 dt = [ 2t

2 + t ]
x

0
=

2x
2 + x

∫
x

0

1
2 (1 +

1
(1 + t)2 ) =

1
2 [t +

t
1 + t ]

x

0
=

1
2 ( x2 + 2x

1 + x )
∀x ∈ [0; + ∞[,

2x
2 + x

⩽ ln (1 + x) ⩽
1
2 ( x2 + 2x

1 + x )
x ∈ ]0; + ∞[

2
2 + x

⩽
ln (1 + x)

x
⩽

1
2 ( x + 2

1 + x )
2

2 + x
− 1 ⩽

ln (1 + x)
x

− 1 ⩽
1
2 ( x + 2

1 + x ) − 1

g
−x

2 + x
⩽ g (x) − 1 ⩽

−x
2 (1 + x)

−1
2 + x

⩽
g (x) − 1

x
⩽

−1
2 (1 + x)

lim
x→0+

g (x) − 1
x

= −
1
2
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Partie II




1. Quand ,  par croissance comparée et .


Donc 


Géométriquement, l’axe des abscisses est une asymptote à la courbe .


2. a) Quand ,  (on reconnait le taux d’accroissement de  en 

 et donc sa limite est la limite de ).


Comme , .


Donc  peut être prolongée par continuité en  avec .


b)  (Remarque : technique à garder en tête, on 

fait apparaitre la quantité souhaité, en s’assurant que c’est légitime, ici  est bien définie sur le domaine 
considéré).


De l’égalité ci-dessus, on conclut bien  


c) Si la limite existe, on aura bien 


Or, quand ,


 (dérivée de fonction usuelle)


 (cf question 2.a)


 (cf partie I)





Finalement 


Et donc  est bien dérivable à droite en  et 


3.  est dérivable sur  comme produit de fonctions qui le sont sur cet intervalle.








x → + ∞ g (x) =
ln (1 + x)

x
→ 0 e−x → 0

lim
x→+∞

f (x) = 0

(C )

x → 0 g (x) =
ln (1 + x)

x
→ 1 t ↦ ln (1 + t)

0 t ↦
1

1 + t
e−x → 1 lim

x→0
f (x) = 1

f 0 f (0) = 1

f (x) − 1
x

=
g (x) e−x − 1

x
=

g (x) e−x − g (x) + g (x) − 1
x

g

f (x) − 1
x

= ( e−x − 1
x ) g (x) + ( g (x) − 1

x )
f ′￼d (0) = lim

x→0+

f (x) − 1
x

x → 0+

e−x − 1
x

→ − 1

g (x) =
ln (1 + x)

x
→ 1

g (x) − 1
x

→ −
1
2

f (x) − 1
x

→ −
3
2

f 0 f ′￼d (0) = −
3
2

f ]0; + ∞[

∀x ∈ ]0; + ∞[, f ′￼(x) = −
ln (1 + x)

x
e−x +

x
1 + x − ln (1 + x)

x2
e−x

=
x − (1 + x) ln (1 + x) − x (1 + x) ln (1 + x)

x2 (1 + x)
e−x
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Ce qui donne 


4. a) Posons 




















Nous devons trouver le signe du numérateur (le dénominateur étant positif).


Etudions donc la quantité  


Comme  (on dérive la fonction  et le 
résultat est immédiat).


Donc 


Finalement .


De la question 2.c) on tire .


Par croissance comparée on trouve 


En tenant compte de la remarque précédente, 

Et donc .


On conclut que 




b) En reprenant la notation précédente, on a  et 


On déduit donc 


∀x ∈ ]0; + ∞[, f ′￼(x) =
x − (1 + x)2 ln (1 + x)

x2 (1 + x)
e−x

∀x ∈ ]0; + ∞[, h (x) =
x − (1 + x)2 ln (1 + x)

x2 (1 + x)

∀x ∈ ]0; + ∞[, h′￼(x) =
(1 − 2xln (1 + x) − (1 + x)2

(1 + x) ) x2 (1 + x) − ((2x (1 + x)) + x2) (x − (1 + x)2 ln (1 + x))
(x2 (1 + x))2

=
(−2xln (1 + x) − x) x2 (1 + x) − ((2x (1 + x)) + x2) (x − (1 + x)2 ln (1 + x))

(x2 (1 + x))2

=
(−2ln (1 + x) − 1) x2 (1 + x) − (3x + 2) (x − (1 + x)2 ln (1 + x))

x3 (1 + x)2

=
(−2x2 (1 + x) + (3x + 2) (1 + x)2) ln (1 + x) − x2 (1 + x) − x (3x + 2)

x3 (1 + x)2

=
((x2 + 5x + 2) (1 + x)) ln (1 + x) − x3 − 4x2 − 2x

x3 (1 + x)2

=
((x2 + 5x + 2) (1 + x)) ln (1 + x) − x3 − 4x2 − 2x

x3 (1 + x)2

((x2 + 5x + 2) (1 + x)) ln (1 + x) − x3 − 4x2 − 2x , ∀x ∈ ]0; + ∞[
∀x ∈ ]0; + ∞[, (1 + x) ln (1 + x) > x x ↦ (1 + x) ln (1 + x) − x

∀x ∈ ]0; + ∞[, ((x2 + 5x + 2) (1 + x)) ln (1 + x) > x (x2 + 5x + 2) ⩾ x (x2 + 4x + 2)
∀x ∈ ]0; + ∞[, h′￼(x) > 0

lim
x→0

h (x) = −
3
2

lim
x→+∞

h (x) = 0

x − (1 + x)2 ln (1 + x) ⩽ x − x (1 + x) = − x2 < 0
h(x) < 0

∀x ∈ ]0; + ∞[, −
3
2

<
x − (1 + x)2 ln (1 + x)

x2 (1 + x)
< 0

f ′￼(x) = h (x) e−x ∀x ∈ ]0; + ∞[, 0 < e−x < 1

∀x ∈ ]0; + ∞[, −
3
2

< f ′￼(x) < 0
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5. a)  est strictement décroissante sur .


b) 


Partie III


1. Sur , considérons la fonction .

Cette fonction est dérivable sur cet intervalle et, d’après la partie précédente, .


De plus  et  (d’après les propriétés de , donc pas de problème particulier)




On en déduit que  s’annule une unique fois sur .


Et donc l’équation  admet une unique solution  sur 


2. a) En considérant le prolongement de  en  par , on sait que .


Par hypothèse, , donc .


On suppose la propriété vraie au rang  et étudions le rang  :


Le résultat est immédiat : 




Ce qui prouve l’hérédité de la propriété.


On conclut : 


b) Par définition de , 


En utilisant l’inégalité des accroissements finis (pour , sinon on vérifie que le résultat demandé est 

vrai par définition de ), on a : .


D’où : .


En conclusion : .


c) On utilise la question précédente pour initialiser la récurrence :


f ]0; + ∞[

]0; + ∞[ k : x ↦ f (x) − 3x
∀x ∈ ]0; + ∞[, k′￼(x) < 0

k (0) = 1 lim
x→+∞

k (x) = − ∞ f

k ]0; + ∞[

f (x) = 3x α ]0; + ∞[

f 0 f (0) = 1 ∀x ∈ ℝ+, f (x) > 0

β ∈ ℝ+ u1 =
1
3

f (β) ⩾ 0

n n + 1
un+1 =

1
3

f (un) ⩾ 0

∀n ∈ ℕ, un ⩾ 0

α un+1 − α =
1
3

f (un) −
1
3

f (α)

un ≠ α

α
f (un) − f (α)

un − α
⩽

3
2

un+1 − α =
1
3

f (un) − f (α) ⩽
1
2

un − α

un+1 − α ⩽
1
2

un − α
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Supposons la propriété vraie au rang  et étudions le rang  :

On utilise à nouveau la question précédente : 

 (La 2ème inégalité étant l’hypothèse de 

récurrence ).

Ce qui confirme l’hérédité de la propriété.


Donc,  




d) L’inégalité précédente nous permet de déduire que .


Et donc  tend vers 


Exercice 2


1. a) 


Et par croissance de l’exponentielle, on peut encadrer : 





D’après le théorème des valeurs intermédiaires, .


Et donc 





b) 


Donc 




c) Par définition de  (et par la croissance de l’exponentielle, on déduit immédiatement que :





2. a) En sommant les inégalités précédentes, on trouve :





Et en changeant d’indice dans l’inégalité de droite, on obtient :


u1 − α ⩽
1
2

u0 − α =
1
2

β − α

n n + 1

un+1 − α ⩽
1
2

un − α ⩽
1
2

×
1
2n

β − α =
1

2n+1
β − α

∀n ∈ ℕ, un − α ⩽
1
2n

β − α

un − α → 0

(un) α

∀k ∈ {1; 2; . . . ; n − 1}, e
k + 1

n − e
k
n = ∫

k + 1
n

k
n

etdt

1
n

e
k
n < ∫

k + 1
n

k
n

etdt <
1
n

e
k + 1

n

∃ck ∈ ] k
n

;
k + 1

n [, ∫
k + 1

n

k
n

etdt =
1
n

eck

∀k ∈ {1; 2; . . . ; n − 1}, ∃ck ∈ ] k
n

;
k + 1

n [, e
k + 1

n − e
k
n =

1
n

eck

∀k ∈ {1; 2; . . . ; n − 1}, (Mk Mk+1)2 = ( k + 1
n

−
k
n )

2

+ (e
k + 1

n − e
k
n)

2
=

1
n2

+
1
n2

e2ck

∀k ∈ {1; 2; . . . ; n − 1}, Mk Mk+1 =
1
n

1 + e2ck

ck

∀k ∈ {1; 2; . . . ; n − 1},
1
n

1 + e
2k
n ⩽ Mk Mk+1 ⩽

1
n

1 + e
2(k + 1)

n

∀n ∈ ℕ*,
1
n

n−1

∑
k=0

1 + e
2k
n ⩽ Sn ⩽

1
n

n−1

∑
k=0

1 + e
2(k + 1)

n
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b) On reconnaît une somme de Riemann, avec ,  et la fonction .


On conclut 





Exercice 3

1. a)  








b) D’après la question précédente, 


Et donc 


c) Par ailleurs, on a, 





.


Donc 


d) D’après la question précédente, on trouve que .








Finalement  


2. a)  et 


Donc 


La propriété est bien initialisée au rang 1.


Supposons la propriété vraie au rang  et étudions le rang 


∀n ∈ ℕ*,
1
n

n−1

∑
k=0

1 + e
2k
n ⩽ Sn ⩽

1
n

n

∑
k=1

1 + e
2k
n

a = 0 b = 1 x ↦ 1 + e2x

lim
n→+∞

Sn = ∫
1

0
1 + e2xd x

1 − i = 2e−i π
4

1 + i 3 = 2ei π
3

(1 − i ) (1 + i 3)
2 2

=
2e−i π

4 × 2ei π
3

2 2
= ei( π

3 − π
4 )

(1 − i ) (1 + i 3)
2 2

= ei π
12

(1 − i ) (1 + i 3)
2 2

=
1 + i 3 − i + 3

2 2
=

1 + 3 + i ( 3 − 1)
2 2

tan ( π
12 ) =

3 − 1

3 + 1
=

( 3 − 1)
2

2
= 2 − 3

tan ( π
12 ) = 2 − 3

arg (u) =
π
12

u 2 = 1 + (2 − 3)
2

= 8 − 4 3 = 8 − 2 12 = ( 6 − 2)
2

u = ( 6 − 2) ei π
12

x1 = 1 y1 = 2 − 3

x1 + iy1 = 1 + (2 − 3) i = u

n n + 1
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Avec : 


On a 







Ce qui confirme l’hérédité de la propriété.


On conclut 


b) 


Et d’après les question 1.c) et d), 


Comme 


Et donc, 


3. a) On a  qui est sur l’axe des réels.


Pour que  soit aligné avec  et , il faut qu’il soit également sur l’axe des réels.


Cela signifie que  ou  et finalement .


Donc  et  sont alignés si  est un multiple de .


b) Etudions les carrés des longueurs des côtés du triangle 





De la même façon, 


Et 


xn+1 = xn − (2 − 3) yn

yn+1 = (2 − 3) xn + yn

xn+1 + iyn+1 = xn − (2 − 3) yn + i ((2 − 3) xn + yn) = xn (1 + i (2 − 3)) + yn (i − (2 − 3))
= xn (1 + i (2 − 3)) + iyn (1 + i (2 − 3)) = u (xn + iyn) = u × un = un+1

∀n ∈ ℕ, xn + iyn = un

un = ( 6 − 2)
n

ein π
12

1 + tan2 ( π
12 ) = ( 6 − 2)

2
=

1

cos2 ( π
12 )

cos ( π
12 ) ⩾ 0,

1

cos ( π
12 )

= ( 6 − 2)

xn =
cos ( nπ

12 )
cosn ( π

12 )
, yn =

sin ( nπ
12 )

cosn ( π
12 )

A0(1; 0)

An O A0

yn = 0 sin ( nπ
12 ) = 0

nπ
12

≡ 0 [π]

O, A0 An n 12

OAn An+1

(OAn)2 =
cos2 ( nπ

12 )
cos2n ( π

12 )
+

sin2 ( nπ
12 )

cos2n ( π
12 )

=
1

cos2n ( π
12 )

(OAn+1)2 =
1

cos2(n + 1) ( π
12 )

(An An+1)2 =
cos ( (n + 1)π

12 )
cosn+1 ( π

12 )
−

cos ( nπ
12 )

cosn ( π
12 )

2

+
sin ( (n + 1)π

12 )
cosn+1 ( π

12 )
−

sin ( nπ
12 )

cosn ( π
12 )

2
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Et donc 




D’après le théorème de Pythagore, le triangle  est rectangle en .


Exercice 4



1. a) Comme  est premier et impair, il est premier avec .


Donc, d’après le petit théorème de Fermat, 


b) Utilisons la remarque donnée dans l’énoncé : 


Comme  est premier, d’après le théorème de Gauss, l’un des 2 membre divise .


Donc  ou 


2. a) Si  est solution de ,  ( , car si , ).

Supposons par l’absurde que  et  ne sont pas premiers entre : .



D’où  ou , ce qui est impossible.


Donc Si  est solution de ,  et  sont premiers entre eux.


b) Si , 


En utilisant le résultat précédent, et le petit théorème de Fermat 


Et donc 


3. Les indications permettent de conclure immédiatement avec le théorème de Gauss :




 et . 


Comme ,  on conclut 


4. a)  et donc .


=
1

cos2(n + 1) ( nπ
12 )

+
1

cos2n ( nπ
12 )

− 2
cos ( nπ

12 ) cos ( (n + 1)π
12 )

cos2n+1 ( π
12 )

− 2
sin ( nπ

12 ) sin ( (n + 1)π
12 )

cos2n+1 ( π
12 )

=
1

cos2(n + 1) ( π
12 )

+
1

cos2n ( π
12 )

− 2
cos ( π

12 )
cos2n+1 ( π

12 )
=

1

cos2(n + 1) ( π
12 )

+
1

cos2n ( π
12 )

−
2

cos2n ( π
12 )

(OAn)2 + (An An+1)2 =
1

cos2n ( π
12 )

+
1

cos2(n + 1) ( π
12 )

+
1

cos2n ( π
12 )

−
2

cos2n ( π
12 )

=
1

cos2(n + 1) ( π
12 )

= (OAn+1)2

OAn An+1 An

p 2

2p−1 ≡ 1 [p]

(2
p − 1

2 + 1) (2
p − 1

2 − 1) = 2p−1 − 1 ≡ 0 [p]
p p

2
p − 1

2 ≡ 1 [p] 2
p − 1

2 ≡ − 1 [p]

x (E ) ∃k ∈ ℕ, x2 = k p + 2 k ∈ ℕ k < 0 k p + 2 < 0
x p ∃n ∈ ℤ, x = np

n2p2 = k p + 2 n2p2 − k p = p (n2p − k) = 2

x (E ) x p

x2 ≡ 2 [p] (x2)
p − 1

2 ≡ 2
p − 1

2 [p]
xp−1 ≡ 1 [p]

2
p − 1

2 ≡ 1 [p]

p | pCk−1
p−1 pCk−1

p−1 = kCk
p

p ∤ k p |Ck
p

1 + i = 2ei π
4 (1 + i )p = 2

p
2 ein π

4
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Ce qui donne bien 


b) En utilisant la formule donnée  





Donc par identification :  et .


Et 




De plus, d’après la question 3.,  et .


On a donc 


5. On utilise la question 2. qui impose  quand  possède des solutions.


Or, 


Plus généralement, avec  : 

(On vérifie que les puissances de 4 se terminent par 6 pour les puissances paires et 4 pour les impaires).


Remarque : on arrive au même résultat en utilisant la congruence de la question précédente sur le cosinus. 
Personnellement, je trouve ça un peu plus lourd par rapport à l’utilisation des puissances de 4 !


Donc si ,  n’admet pas de solution dans .


Exercice 5

Partie I


1. On vérifie que  et .


Il faut s’assurer de la stabilité de  par l’addition, avec  :








Ainsi  est un sous-groupe de .


2. Suite à la question précédente, il faut montrer la stabilité par multiplication par un scalaire.

On considère 


(1 + i )p = 2
p
2 cos (p

π
4 ) + i2

p
2 sin (p

π
4 )

(1 + i )p =

p − 1
2

∑
k=0

(−1)k C2k
p + i

p − 1
2

∑
k=0

(−1)k C2k+1
p

2
p
2 cos (p

π
4 ) =

p − 1
2

∑
k=0

(−1)k C2k
p ∀k ∈ {0; 1; . . . ; n − 1}, C2k

p ∈ ℕ

2
p
2 cos (p

π
4 ) ∈ ℤ

∀k ∈ {1; 2; . . . ; n − 1}, p |C2k
p C0

p = 1

2
p
2 cos (p

π
4 ) ≡ 1 [p]

2
p − 1

2 ≡ 1 [p] (E )

2
5 − 1

2 = 4 ≡ − 1 [5]
p = 8k + 5, k ∈ ℕ 2

5 + 8k − 1
2 = 24k+2 = 42k+1 ≡ − 1 [p]

p ≡ 5 [8] (E ) ℤ

E ⊂ M2 (ℝ) O = M (0,0) ∈ E

E (a , b, x , y) ∈ ℝ4

M (x , y) + M (a , b) = (x + y y
2y x − y) + (a + b b

2b a − b)
= (

x + y + a + b y + b
2 (y + b) x + a − y − b) = M (a + x , b + y) ∈ E

E (M2 (ℝ), +)

(a , b, x , y, λ) ∈ ℝ5
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Et  est bien un sous-espace vectoriel de 


3. a) Soient 








b) D’après le résultat précédent,  est stable par la multiplication et commutatif (par symétrie du résultat).

L’unité . On peut affirmer que  est un sous-anneau de .


Donc  est anneau unitaire commutatif. 


4. a) D’après la formule de la question précédente, on a :





On confirme 


b) La question précédente nous indique le l’anneau  n’est pas intègre et donc n’est pas un corps.

Or tout corps est un anneau intègre (Remarque : on prouve cela en utilisant le fait que tous les éléments non 
nuls d’un corps sont inversibles).


Donc  n’est pas un corps.


Partie II


1. Avec 


Ce qui est absurde car  est irrationnel.


Donc 


2. On vérifie que  et 

Il faut s’assurer de la stabilité de  par la multiplication :





Il faut également vérifier que l’inverse d’un élément de  est bien dans  :


 (l’irrationalité de  nous assure là aussi que le dénominateur est non nul).


M (x , y) + λ M (a , b) = (x + y y
2y x − y) + (λa + λb λb

2λb λa − λb)
= (

x + y + λa + λb y + λb
2 (y + λb) x + λa − y − λb) = M (λa + x , λb + y) ∈ E

E (M2 (ℝ), + , . )

(x , y, x′￼, y′￼) ∈ ℝ4, M (x , y) × M (x′￼, y′￼) = (x + y y
2y x − y) × (x′￼+ y′￼ y′￼

2y′￼ x′￼− y′￼)
= ( (x + y) (x′￼+ y′￼) + 2y y′￼ (x + y) y′￼+ y (x′￼− y′￼)

2y (x′￼+ y′￼) + 2y′￼(x − y) 2y y′￼+ (x − y) (x′￼− y′￼))
= (x x′￼+ x y′￼+ yx′￼+ 3y y′￼ x y′￼+ yx′￼

2yx′￼+ 2x y′￼ 3y y′￼+ x x′￼− yx′￼− x y′￼) = M (x x′￼+ 3y y′￼, x y′￼+ yx′￼)

E
I = M(1,0) ∈ E E (M2 (ℝ), + , × )

E

M ( 3,1) × M (− 3,1) = M (−3 + 3, − 3 + 3) = M (0,0) = O

M ( 3,1) × M (− 3,1) = O

E

E

(x , y) ∈ ℚ*2, x + y 3 = 0 ⇔ 3 = −
x
y

∈ ℚ

3

∀(x , y) ∈ ℚ2, x + y 3 = 0 ⇔ x = y = 0

F − {0} ⊂ ℝ* 1 ∈ F
F − {0}

∀(x , x′￼, y, y′￼) ∈ ℚ4, (x + y 3) (x′￼+ y′￼ 3) = x x′￼+ 3y y′￼+ (x y′￼+ yx′￼) 3 ∈ F

F F
1

x + y 3
=

x − y 3
x2 − 3y2

∈ F 3
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Donc  est un sous-groupe de 


3. a) D’après la question 1. si 


Et 


b) D’après la question 2. on reconnaît que le résultat de la multiplication dans  a la même forme que celle 
dans  vue dans la question 3 de la partie I.


On a donc 


Donc  et un homomorphisme de  dans 


c) La commutativité de la multiplication dans  assure celle dans .


 


Et 


Donc 


Par le même raisonnement (via les antécédents par , on trouve que les éléments de  ont un 
inversé dans .


Ce qui permet de conclure que  est un groupe commutatif


4.  est un sous-groupe de 

La question précédente assure que  est un anneau intègre dont tous les éléments non nuls sont 
inversibles. De plus il est commutatif.


On conclut que  est un corps commutatif.

F − {0} (ℝ*, × )

(x , y) ≠ (0,0), φ (x , y) ≠ O

φ (F − {0}) = G − {O}

F
E

φ ((x + y 3) × (x′￼+ y′￼ 3)) = M (x , y) × M (x′￼, y′￼)

φ (F − {0}, × ) (E, × )

ℚ F − {0}

φ ((x′￼+ y′￼ 3) × (x + y 3)) = M (x′￼, y′￼) × M (x , y)
φ ((x′￼+ y′￼ 3) × (x + y 3)) = φ ((x + y 3) × (x′￼+ y′￼ 3))

M (x , y) × M (x′￼, y′￼) = M (x′￼, y′￼) × M (x , y)
φ G − {O}

G − {O}

(G − {O}, × )
(G, +) (E, +)

(G, + , × )

(G, + , × )

©antoine.remond.maths@gmail.com

mailto:antoine.remond.maths@gmail.com

	Exercice 1
	Exercice 2
	Exercice 3
	Exercice 4
	Exercice 5

