
Exercice : Intégrales de Wallis. 


On définit : 


1- Calculer ,  et 

2- a) Montrer que la suite  est décroissante

     b) En déduire qu’elle est convergente

3- Etablir une relation de récurrence entre  et 

4- Montrer que  et constant et préciser sa valeur


Solution :


1- 





En intégrant par parties on a 


Or :  et donc .


 On peut donc écrire : 


Et .


2- 

a) Pour étudier les variations de , on étudie : 

.


Comme ,  et , on conclut .


Donc  est décroissante.


b) La suite  est décroissante et minorée par 0, donc convergente.


3- On utilise l’intégration par parties comme pour calculer .


On trouve : .


La première partie s’annule et .


Par ailleurs, en écrivant , on trouve : 







Donc  ou . (On vérifie que la formule fonctionne pour  et )


In = ∫
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4- A partir de la formule précédente, on obtient directement : .

On calcule la valeur à partir de la question 1 :  (là encore, on vérifie que la valeur fonctionne pour 

).
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