CAPES Externe 2015 epreuve 1

Probleme n°1
Partie A

l.
1. On étend la notation proposée dans I'énoncé en écrivant: 7z = Re (2) + ilm (2).

2] =/ (Re @) + (Im 2))” >/ (Re )" = |Re )] > Re (2)

Les cas d’égalité imposent : |Re (z)| = Re () et Im (z) = 0, ce qui correspond a un réel positif.

Donc |z| =Re(z) ®z€eR,

2. Les 2 quantités a comparer sont positives, on a donc comparer leurs carrés pour alléger un peu
I'écriture.

Nous allons également utiliser une notation traditionnelle z = x + iy, (x,y) € R2 avec les indices
correspondants quand nécessaire.

(] + |]) = |a "+ |2 +2]a] |]

2 2 2
|21+Zz| =(x1+x2)2+(yl+y2)2=x12+y12+x22+y22+2(x1x2+y1y2)=|Z1| +|Zz| +2 (x1x + y13,)

Il faut donc comparer |z1 | |Z2| etx;x, + Y1 Yo

or |21 |za| =/ (2 +32) (63 +32) = y/xixd + 373 +xDy3 +307

On éléeve une nouvelle fois au carré. Sans précision sur le signe des x;, x,, ¥, ¥,, si on prouve l'inégalité
sur les carrés, elle sera plus forte que celle recherchée.

2
— 2,2 2,2 2,2 2.2
<|Z1| |Zz|> = X{Xy F Yy H XYy H Xy
2_ 2.2, .22
Et (X120 +y102) " = X725 + Y1Y5 + 2001y,
On conclut grace a identité : — 2= x2y2 4 x2y2 —
grace a l'identité remarquable : (x1y2 xzyl) = X7y, X397 — 2x1%,y1y, 2 0.
Finalement on vérifie bien : V(zl,zz) e C?, |zl + zz| < |z1| + |z2|

3. (<) Cesens estimmédiat, siz, =4z;, 4 > 0,0na:
|2+ 2| =[G+ Da| =G+ 5]
Et |z1| + |z2| = |z1| + |/1z1| =A1+1 |z1|

Donc|z1+zz| =z + |22
(=) |z1+zz| = |z1| + |z2|

D’apreés la question précédente, on a x;y, — x,y; = 0
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X X
. Supposonsy; #0, y, #0:x;9, —x,y;, =0 & ZL = 22 qu'on définit comme A.
DAT )

Ona |z1+z2| = |/1+1| |z1| et |zl| + |z2| = <|/1| +1> |z1|.
L’hypothése d’égalité impose 4 > 0.

 Supposons y; = 0.
Siy, = 0, on retrouve I'inégalité triangulaire dans R et on va avoir x; = Ax,, 4 > 0.

Si y, # 0: On devrait avoir x; = 0, c’est a dire z; = 0 ce qui est impossible par hypothése.
Et on conclut V(zl,zz) e C?, |z1 +z2| = |Z1| + |Zz| Sz, =17, 42 0.

Il. Dans cette partie, nous allons procéder par récurrence en considérant l'initialisation issue de la partie
précédente.

1. On suppose donc que jusqu’au rang #, V(zl, 2oy e s € c", Z | & Z |Zk| et étudions le
k=1
rangn + 1 :
n+l n n+1

Zpa1 | (utilisation du résultat au rang 2)

Sal = [ Satam|<| 2a
k=1 k=1 k=1

N

Zpal | (utilisation du rang n)

n+1
2al+|al <2 fal+
k=1

k=1
n+1 n+1
Donc Z | < Z |zk| , ce qui assure I'hérédité de la propriété.
k=1

n n
On conclut : V(zl,zz,...,zn) e C", sz < Z |Zk|
k=1

k=1

2. Procédons de la méme fagon que pour la question précédente avec l'initialisation de la question 3 de la
partie précédente et considérons que jusqu’au rang n pour

n n
(zl,zz,...,zn) e C", sz = z |zk| S Vk e [1;n], A4, € R,, z; = 44z et étudions le rang
k=1
n+1:

n
Onpose Z, = Z %
k=1
Grace a la partie précédente, on sait que

Zn+1| Aad EIAn+1 € [R+’ lpt1 = An+IZn

n+1| =

Et par hypothése de récurrence, |Zn

Zn’,zk = Z |zk| & Vk e [lin], 34 € R, 7 = 4z
k= k=1
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En intégrant cela dans I'égalité précédente, etavec 4, ; = A, ,; Z A4 on assure I'hérédité de la

. k=1
recurrence.

n n
On conclut bien que (Zl,zz,...,zn) e C", sz = 2 |zk| S Vk e [l;n], AL eER,, 7 =4y

Géométriquement, le cas d’égalité correspond a tous les points d’affixes z; sur une demi-droite partant de O
et tous les z;, ont le méme argument.

Partie B
I. Onveut Zi = 0.
k=1 |Zk|

On peut prendre par exemple pour 7 pair les sommets d’un polygone régulier centré en O.

n n Z_ka
L Y Z2|Zk| P

k=1 k=1 |Zk|

Orz Z =0etZ;z = |zk|2.
Tl ~ & Tl

n
D’ou la conclusion Z u, (Z - Zk> =- 2 |zk| .
k=1 k=1

2. Remarque : I'’énoncé comporte une faute de frappe. L’inégalité dans C n’a, par défaut, pas de sens. Il
faut considérer le module des z — z,.

n
Ona Z u, (z - zk Z |zk| Z |zk| la derniére égalité s’obtient car on somme des
k=1
nombres positifs).

n

Or, d'aprés la partie A, Zu_k Z—Zk ‘l/l—k =23 |—Z|Mk| |Z—Zk|—Z|Z_Zk|(par
k=1 k=1
définition, les u; sont de module 1.

n n
Finalement Z |Zk| < Z |Z—Zk|.

k=1 k=1

N

3. En utilisation la question 1.2 de la partie A, on sait que I'égalité entre la somme des normes et la norme d
la somme se produit si tous les complexes sont proportionnels entre eux (avec un coefficient positif).

On adonc Vk, i (z — z) = A1 (Z—Zl)

n n 1
Ce qui permet de réécrire Z - Zk u (Z - 21) Z A== Z |Zk|
k=1 = k=1
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n n
Comme 2/1,( > 0 et Z |zk| > 0, on a forcément u; (z - zl) eR_

n n

Et conclut que Z |zk| = Z |z —zk| impose Vk, 1 (z - zk) €R_
k=1 k=1

4. (&) Siz =0, égalité est triviale.

(=) z”: |Zk| = z”: |Z—Zk|,cequi impose Vk, ”_k(Z—Zk) =/1k”_1(2—11)
k=1 k=1

Ou zugy, — |zk| = A2y — 4 |z1|,qu’on écritencorez(u_k—ﬁku_l) = |zk| — A |zl|

On considére z # 0 et on distingue 2 cas :

« Vk,w, = A1y, ce qui est impossible par hypothése.
Vk £ 1, L oM

' <l =l
u, — A 1y soient positionnés sur une méme droite, ce qui implique donc que tous les z;, sont également
sur une méme droite. A VERIFIER

ce qui est également impossible car il faudrait alors que tous les

L'hypothése z # 0O est donc absurde.
n n
Finalement Z |zk| = Z |z —zk| ©z=0
k=1 k=1

n
5. On déduit de la question précédente que le minimum des Z M A est atteint pour M = O.
k=1

Partie C

I. (La figure comporte quelques notations erronées suite a des soucis de manipulation de Géogébra,
désolé !)
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/4
Il. B” est 'image de C par la rotation de centre A et d’angle _E' On a donc la relation entre les affixes :

b —a Y4
=e 3

c—a
iz
Doub' —a =(c —a)e '3.

iy s
Finalementb’ = ce '3 +a (1 - e_’?>

/1
De la méme fagon, C’ est 'image de B par la rotation de centre A et d’'angle 3

’

Y3
'3

» T
lg-

On a cette fois : =e¢'3,cequonécritc’ —a = (b - a) e

iZ iZ ) _ g —iZ —iZ
Doncbe3 =c'—al|l —e3)etfinalementb =c’e "3 4+all—e 3.

/ _ iz —iZ ) —iZ —iZ\ _ N —iE
M.b'—b=ce " 3+all—e '3 )—ce 3—all—e 3 )=(—-c)e 3

b'—b

iz /4
-=e '3 et on en déduit que son argument est 1 et son module _?

Donc
c—cC

IV. Par symétrie de la construction par rapport aux 3 sommets du triangle, on déduit que tous les angles
/4
centrés en Q entre un sommet du triangle et un des sommets des triangles équilatéraux valent g (le signe

dépendant de l'orientation).

— — 2r |— — 2 — —> 2

Donc, sur notre représentation : (QB; QC) =— 3 <QC; A) =— 3 et ( A; B) =— EX
— QA — QB
V. En considérant les vecteurs normés proposés, le triangle A” B”C” défini par QA" = on QB" = OF

—s QC
et QC" = m est équilatéral, d’aprés les angles calculés précédemment et les distances identiques.

Donc €2 et le barycentre de ce triangle ce qui assure la relation demandée.

—_— - —
QA QB QC >

+ + =0.
QA QB QC

On conclut :

VI. On retrouve la configuration de la partie précédente (ouf !) et on sait donc que la somme minimale des
distances est obtenue a | ‘origine du repére qui annule la somme des vecteurs, ici £2.

Probleme n°2
Partie A

l.
1. Soit (un) croissante et non majorée.
neN

Par définition d’une suite non majorée, VA > 0, dp € N, u, > A.

©antoine.remond.maths@amail.com



mailto:antoine.remond.maths@gmail.com

Comme de plus (un) N est croissante, Vn > p, u, = A, ce qui est bien la définition de la divergence vers
n

+ 0.

2. Soit (un) N croissante et majorée.
n

Notons [ = sup {un, ne N}.
Par définition de la borne supérieure, Ve > 0, Iny € N, [ — € < Up,

Et comme (un) N est croissante, Vn > n, [ —e < u, <[, ce qui est la définition de la limite.
n ,

3. Par symétrie (en considérant (—un) o Pour formaliser la démonstration ou on la refait complétement
n

< [ (sinon [ — € est un majorant).

en inversant les inégalités !), une suite décroissante est convergente si et seulement si elle est minorée.

n
Soit (an)neN* définie par a, = Z %
k=1

1. a, correspond & une approximation par excés de I'air sous la courbe de la fonction inverse.

2. a.VnZl,azn—a,Z:il—il: i l
k:lk k:lk k:n+1k

11 &1 1
Orpourn+1<k <2n, —>—,donca,, —a, > Z —=5.

Z 2n

b. D’apres le critére de Cauchy, (an) ot est divergente.
n

3. a.Vr e [k;k+1],k <t <k +1etdonc (on saitque k > l)k—<

k=n+1

k+1 k+1 1
La fonction étant intégrable sur [k; k + 1], ce qui donne J Zdt < J —dt £ dt
t

k+1 1 1
Et finalement < J —dt < —.
n—1 n—1 pk+l1 n—1
1 1 1
b. En sommant I'inégalité précédente jusqu'a n — 1, on trouve : — <K Z —dt < —.
k+1 Lt k
k=1 k=1 k=1
n—1 1 n 1
Or 'z———f = Zf::dn—-l
k=1 + k=2
n—1 pk+1 1 n
n
J —dt = J —dt = [In ()], = In(n)
n—l 1
Et :E:'E':: -1 4,
k=1

Finalement, on a bien I'inégalité recherchée : a, — 1 < [n (n) < a,
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c.En+4o0,0naa, ~ In(n).

4. Remarque : I’énoncé est manifestement faux, le produit de 2 quantités divergentes vers +co ne peut pas
converger. Je vais considérer la suite (b,) qui semble la plus naturelle, mais qui n’est pas définie en

n=1.
Y . s an
On considére la suite (bn) définie par b, = .
nz2 In (n)
L'encadrement de la question 3 devient (les étapes sont identiques, car la quantité [n(n) par laquelle on

a,

a
divise ne dépend pas de la variable k) : <1< —>"—, ouen utilisant b, :
In (n) In (n)
1
- L<1<b,.
"m0 "

Etonadoncbien lim b, = 1.
n—+oo

Partie B

l.
1. a. Par définition de la convergence de (u,,) vers 0, on peut affirmer que :

Ve >0,3dn, €N, Vn >ny, —e<u,<e
1 [ & 1 [ & 1 L

v, = — Zuk = — Zuk + — Z U
M\ k=1 A\ k=i n k=ng+1

k=ng+1
n—ng—1 1 C n—ng—1
Etdonc —e¢ < — € L — Z | < €€
n n n
k=n0+1
IR IR
Finalement on a bien — Z w, | —e<v,<— Z u, | +e.
" \i=1 " \i=1
o
b. Comme n,, est fixé dans I'inégalité précédente, lim — Z u | =0.
n—+oo N k=1

Cela permet de conclure que (vn) . converge vers 0.

neN

2. Pour généraliser, on va montrer que si (1,,) tend vers [, (v,) tend vers [.
La démonstration est globalement la méme, avec € qui va servir a encadrer u,, — [, puis on écrit

1 ~ 1 ~

v,—l=— Z | —1=— Z (uk - l) qui permet de conclure de la méme fagon que pour la
ANy M\ =i

limite en O.

1.
X, (1 +xn)

xp=1letVn eN* x, = T+ 2x
n
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x (1 +x 2
1. xzzg = —, donconabien0 < x, < 1.
1+2X1

Comme la propriété est vraie pour n = 2, supposons qu’elle est vraie au rang n et étudions lerangn + 1 :

x (1 +x)

Considérons la fonction f: Vx € |0; 1|, f (x) = .
el s =503

f est bien définie et dérivable sur I'intervalle considérée et

vre o], = L2020 - 2rd 4o

(1+2x)°
Or sur]O; 1 [ 14+2x >2xetl +2x > 1+ x,doncf (x) > 0 et fest croissante.

Comme f(0) =0etf(1) = % on assure que Vx € ]O; 1 [, fx) e ]0; 1 [

On adoncbienx, | =f (xn) € ]0; 1 [ qui nous confirme I'hérédité de la propriété.

Et on conclut que Vn > 2, x, € ]O; 1[.

xn(l +xn) xn(l +xn) —xn(l +2xn) —x,%
2. VneN* x| —x,=——= —x, = = <0
1+ 2x, 1+ 2x, 1+ 2x,

Et la suite (xn) est décroissante.
3. (xn) est décroissante et minorée donc converge.
Elle converge forcément vers un point fixe de f donc 0.

1 1 1+2x, I 1+2x,-1-x, 1

Xos1 Xn %, (14x,) X, x, (1+x,) =1+xn'

1 1 1
5. On pose pourn € N*, y, = -— = )
Xn+1 Xn 1 +xn

Commex, — 0, u, — 1.

6. Par définition de (vn), elle représente une somme téléscopique.

1 z 1 L 1 1 1 1 1 1—x
Ona:v, =— Zuk =— Z——— =— -1)= S
n k=1 n k=1 ‘xk+1 xk n ‘x}’l+1 n-xn+1 n nxn+1

1
Commev, —» l,nx, . ~1—x,,etx, ~ -

[l
1. Reprenons la définition de la convergence de (xn

1l e R, Ve >0,3dny €N, Vn > n,,

vers une limite/ € R :

~—
S

\%
—

xn—l|<

On peut par ailleurs écrire : | X, — X,

Xppn = =%, + 1| <

xn+1_l| +

xn—l| <Le.

On conclut que (an - xn)n>1 converge vers 0.

©antoine.remond.maths@amail.com



mailto:antoine.remond.maths@gmail.com

2. a.D’apres la partie I., la convergence de la suite assure la convergence au sens de Cesaro vers la
méme limite /.

I < 1 X X
OF—Z(.X,H_]—XH):;(X,Z_'_]—X])= il L

n = n n
l ¢ x X X
1 +1 +1
—Z(xn+1—xn)—>let——>0,donc o~ s L
n = n n n+1

. xn
Finalement, on conclut que <—> converge vers [.
n
n>1

b.Sil #0, (x,)

X
| diverge trivialement, car x,, ~ nl (Remarque : le résultat peut se retrouver par—n ou

Xn+1 — xn)
c. Etudions un exemple avec Vn > 1, x, = [n (n), qui diverge vers +co.

n+1
xn+1—xn=ln(n+1)—ln(n)=ln<

) qui tend pourtant bien vers 0.

Partie C

l.
1. (u”) o1 prend alternativement la valeur 1 et — 1, donc la somme de ses termes alternativement 1 et 0.

nz

(v”) converge trivialement vers 0
n=1

2. (un) o1 constitue un contre-exemple de la réciproque de la proposition de la partie précédente : la suite
nz

diverge, mais converge au sens de Cesaro.

1. Sia =0[x], Vn, u, = 0 etidem pour v,,.
2. Uyp—U,=sin ((n +2) a) —sin(na) =2sin (a)cos ((n + 1)a) = 2sin (@) ¢,y
Upip+ U, =Sin ((n +2) a) +sin(na) = 2sin ((n + l)a) cos (a) =2cos (@) u,,,

3. a. En passant a la limite sur la premiére relation (assurée par I’hypothése de convergence de (un) 1
nz

on tire immédiatement que (cn) ., converge vers 0.
nz

En sommant les 2 relations, et en nommant [ la limite considérée :
u,=cos(@u,,—sin(a)c,,; >l =cos(a)letl =0

b. D’aprés la question précédente, il faudrait qu’a la fois cos (na) et sin (na) tendent vers 0, ce qui est
impossible.
L’hypothése de convergence de <u")n>1 est donc absurde et (un)n>1 diverge.

ika

1 n
c. Comme suggéré, passons par la somme S, = — Z e qui est une somme géométrique (plutbt la

n
k=1

moyenne d’'une somme) et dont v, est la partie imaginaire.
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n ina
S =lzeika=lx6ia1_e
n & n 1 —eix

Utilisons I'expression conjuguée du dénominateur (ce qui est légitime car o # 0 [x]) :
(1 —cos(a)—isin (a)) (1 —cos(a)+isin (a)) = (1 —cos (01))2 + (sin (oz))2 =2 (1 —cos (a))

Do Sn _ l y ela(l —e_la) (1 —ema) _ l y (el(l_ 1) (1 _ema).
n 2(1=cos (@) n 2(l-cos(a)

Le module des éléments composant la fraction sont bornés, donc S, converge vers 0.

1. Par croissance de (un) _,» On sait que Vkzn+1, u, <.

>1
2n 2n 2n
En sommant, Z Uy < Z wounu, ; < Z Uy
k=n+1 k=n+1 k=n+1

2. Par définition de (vn) op on obtient directement le résultat demandé (et méme sans la faute de frappe),

nz
1 2n 1 2n n
”n+1<_2“k=_ Zuk_zuk =2, =,
gy — "\ k=i k=1

3. Comme (v ) converge, elle est bornée et donc majorée (ainsi que la suite extraite (v2 ) ).
) pz1 =1

L'inégalité de la question précédente, (un) o1 est également majorée, donc convergente.
nz

Notons v la limite de (vn) o1 et u celle de (un) o1
nz

nz
En utilisant une nouvelle fois la question précédente, on trouve : u < 2v — v = .

Par ailleurs, la suite (un) o1 étant croissante, sur le méme principe que la 1ére question, on obtient :
n
n

1 1
V}’l = ;Z I/tk < ;
k=1 k=1

Etdoncv < u.

n

=
U, = U,

On conclut donc que v = u et que (un) o1 et (vn) | ont la méme limite.
n n

=z 3

4. Par symétrie, on obtient le méme résultat pour une suite décroissante.

On peut donc énoncé qu’une suite monotone converge si et seulement si sa moyenne de Cesaro converge
et que les 2 ont alors la méme limite.
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