
CAPES Externe 2015 épreuve 1

Problème n°1

Partie A

I.

1. On étend la notation proposée dans l’énoncé en écrivant : .





Les cas d’égalité imposent :  et , ce qui correspond à un réel positif.

Donc 


2. Les 2 quantités à comparer sont positives, on a donc comparer leurs carrés pour alléger un peu 
l’écriture.


Nous allons également utiliser une notation traditionnelle  avec les indices 
correspondants quand nécessaire.







.


Il faut donc comparer  et .


Or 


On élève une nouvelle fois au carré. Sans précision sur le signe des , si on prouve l’inégalité 
sur les carrés, elle sera plus forte que celle recherchée.





Et 


On conclut grâce à l’identité remarquable : .


Finalement on vérifie bien : 


3.  Ce sens est immédiat, si , on a :




Et 


Donc 


 


D’après la question précédente, on a 


z = Re (z) + i Im (z)
z = (Re (z))2 + (Im (z))2 ⩾ (Re (z))2 = Re (z) ⩾ Re (z)

Re (z) = Re (z) Im (z) = 0
z = Re (z) ⇔ z ∈ ℝ+

z = x + iy, (x , y) ∈ ℝ2

( z1 + z2 )
2

= z1
2

+ z2
2

+ 2 z1 z2

z1 + z2
2

= (x1 + x2)2 + (y1 + y2)2 = x2
1 + y2

1 + x 2
2 + y2

2 + 2 (x1x2 + y1y2) = z1
2

+ z2
2

+ 2 (x1x2 + y1y2)

z1 z2 x1x2 + y1y2

z1 z2 = (x2
1 + y2

1) (x 2
2 + y2

2) = x2
1 x 2

2 + y2
1 y2

2 + x2
1 y2

2 + x 2
2 y2

1

x1, x2, y1, y2

( z1 z2 )
2

= x2
1 x 2

2 + y2
1 y2

2 + x2
1 y2

2 + x 2
2 y2

1

(x1x2 + y1y2)2 = x2
1 x 2

2 + y2
1 y2

2 + 2x1x2y1y2

(x1y2 − x2y1)2 = x2
1 y2

2 + x 2
2 y2

1 − 2x1x2y1y2 ⩾ 0

∀(z1, z2) ∈ ℂ2, z1 + z2 ⩽ z1 + z2

( ⇐ ) z2 = λz1, λ ⩾ 0
z1 + z2 = (λ + 1) z1 = (λ + 1) z1

z1 + z2 = z1 + λz1 = (λ + 1) z1

z1 + z2 = z1 + z2

( ⇒ ) z1 + z2 = z1 + z2

x1y2 − x2y1 = 0
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• Supposons  : , qu’on définit comme .


On a  et .


L’hypothèse d’égalité impose .


• Supposons .

Si , on retrouve l’inégalité triangulaire dans  et on va avoir .


Si   : On devrait avoir , c’est à dire  ce qui est impossible par hypothèse.


Et on conclut .


II. Dans cette partie, nous allons procéder par récurrence en considérant l’initialisation issue de la partie 
précédente.


1. On suppose donc que jusqu’au rang ,  et étudions le 

rang  :


 (utilisation du résultat au rang )


Et  (utilisation du rang )


Donc , ce qui assure l’hérédité de la propriété.


On conclut : 


2. Procédons de la même façon que pour la question précédente avec l’initialisation de la question 3 de la 
partie précédente et considérons que jusqu’au rang  pour 

 et étudions le rang 

 :


On pose .


Grâce à la partie précédente, on sait que 



Et par hypothèse de récurrence, 


y1 ≠ 0, y2 ≠ 0 x1y2 − x2y1 = 0 ⇔
x1

y1
=

x2

y2
λ

z1 + z2 = λ + 1 z1 z1 + z2 = ( λ + 1) z1

λ ⩾ 0

y1 = 0
y2 = 0 ℝ x1 = λ x2, λ ⩾ 0

y2 ≠ 0 x1 = 0 z1 = 0

∀(z1, z2) ∈ ℂ2, z1 + z2 = z1 + z2 ⇔ z2 = λz1, λ ⩾ 0

n ∀(z1, z2, . . . , zn) ∈ ℂn,
n

∑
k=1

zk ⩽
n

∑
k=1

zk

n + 1
n+1

∑
k=1

zk =
n

∑
k=1

zk + zn+1 ⩽
n+1

∑
k=1

zk + zn+1 2

n+1

∑
k=1

zk + zk ⩽
n

∑
k=1

zk + zn+1 n

n+1

∑
k=1

zk ⩽
n+1

∑
k=1

zk

∀(z1, z2, . . . , zn) ∈ ℂn,
n

∑
k=1

zk ⩽
n

∑
k=1

zk

n

(z1, z2, . . . , zn) ∈ ℂn,
n

∑
k=1

zk =
n

∑
k=1

zk ⇔ ∀k ∈ [1; n], ∃λk ∈ ℝ+, zk = λkz1

n + 1

Zn =
n

∑
k=1

zk

Zn + zn+1 = Zn + zn+1 ⇔ ∃Λn+1 ∈ ℝ+, zn+1 = Λn+1Zn

Zn =
n

∑
k=1

zk =
n

∑
k=1

zk ⇔ ∀k ∈ [1; n], ∃λk ∈ ℝ+, zk = λkz1

©antoine.remond.maths@gmail.com

mailto:antoine.remond.maths@gmail.com


En intégrant cela dans l’égalité précédente, et avec  on assure l’hérédité de la 

récurrence.


On conclut bien que 


Géométriquement, le cas d’égalité correspond à tous les points d’affixes  sur une demi-droite partant de  
et tous les  ont le même argument.


Partie B


I. On veut .


On peut prendre par exemple pour  pair les sommets d’un polygone régulier centré en . 


II.


1. .


Or  et .


D’où la conclusion .


2. Remarque : l’énoncé comporte une faute de frappe. L’inégalité dans  n’a, par défaut, pas de sens. Il 
faut considérer le module des .


On a  (la dernière égalité s’obtient car on somme des 

nombres positifs).


Or, d’après la partie A,  (par 

définition, les  sont de module .


Finalement .


3. En utilisation la question II.2 de la partie A, on sait que l’égalité entre la somme des normes et la norme d 
la somme se produit si tous les complexes sont proportionnels entre eux (avec un coefficient positif).


On a donc . 


Ce qui permet de réécrire : 


λn+1 = Λn+1

n

∑
k=1

λk

(z1, z2, . . . , zn) ∈ ℂn,
n

∑
k=1

zk =
n

∑
k=1

zk ⇔ ∀k ∈ [1; n], ∃λk ∈ ℝ+, zk = λkz1

zk O
zk

n

∑
k=1

zk

zk

= 0

n O

n

∑
k=1

uk (z − zk) = z
n

∑
k=1

zk

zk

−
n

∑
k=1

zkzk

zk

n

∑
k=1

zk

zk

=
n

∑
k=1

zk

zk

= 0 zkzk = zk
2

n

∑
k=1

uk (z − zk) = −
n

∑
k=1

zk

ℂ
z − zk

n

∑
k=1

uk (z − zk) =
n

∑
k=1

zk =
n

∑
k=1

zk

n

∑
k=1

uk (z − zk) ⩽
n

∑
k=1

uk (z − zk) =
n

∑
k=1

uk z − zk =
n

∑
k=1

z − zk

uk 1
n

∑
k=1

zk ⩽
n

∑
k=1

z − zk

∀k , uk (z − zk) = λku1 (z − z1)
n

∑
k=1

uk (z − zk) = u1 (z − z1)
n

∑
k=1

λk = −
n

∑
k=1

zk
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Comme  et , on a forcément 


Et conclut que  impose 


4.  Si , l’égalité est triviale.


 , ce qui impose 


Ou , qu’on écrit encore 


On considère  et on distingue 2 cas :

• , ce qui est impossible par hypothèse.


•
 ce qui est également impossible car il faudrait alors que tous les 

 soient positionnés sur une même droite, ce qui implique donc que tous les  sont également 
sur une même droite. A VERIFIER


L’hypothèse  est donc absurde.


Finalement 


5. On déduit de la question précédente que le minimum des  est atteint pour .


Partie C

I. (La figure comporte quelques notations erronées suite à des soucis de manipulation de Géogébra, 
désolé !)


n

∑
k=1

λk ⩾ 0
n

∑
k=1

zk ⩾ 0 u1 (z − z1) ∈ ℝ−

n

∑
k=1

zk =
n

∑
k=1

z − zk ∀k , uk (z − zk) ∈ ℝ−

( ⇐ ) z = 0

( ⇒ )
n

∑
k=1

zk =
n

∑
k=1

z − zk ∀k , uk (z − zk) = λku1 (z − z1)

z uk − zk = λkz u1 − λk z1 z (uk − λku1) = zk − λk z1

z ≠ 0
∀k , uk = λku1

∀k ≠ 1,
1
z

=
uk − λku1

zk − λk z1

uk − λku1 zk

z ≠ 0
n

∑
k=1

zk =
n

∑
k=1

z − zk ⇔ z = 0

n

∑
k=1

MAk M = O
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II.  est l’image de  par la rotation de centre  et d’angle . On a donc la relation entre les affixes : 




D’où .


Finalement 


De la même façon,  est l’image de  par la rotation de centre  et d’angle .


On a cette fois : , ce qu’on écrit .


Donc  et finalement .


III. 


Donc  et on en déduit que son argument est  et son module .


IV. Par symétrie de la construction par rapport aux 3 sommets du triangle, on déduit que tous les angles 
centrés en  entre un sommet du triangle et un des sommets des triangles équilatéraux valent  (le signe 

dépendant de l’orientation).


Donc, sur notre représentation : ,  et 


V. En considérant les vecteurs normés proposés, le triangle  défini par  ,  

et  est équilatéral, d’après les angles calculés précédemment et les distances identiques.


Donc  et le barycentre de ce triangle ce qui assure la relation demandée.


On conclut : .


VI.  On retrouve la configuration de la partie précédente (ouf !) et on sait donc que la somme minimale des 
distances est obtenue à l ‘origine du repère qui annule la somme des vecteurs, ici .


Problème n°2

Partie A

I.

1. Soit  croissante et non majorée.


Par définition d’une suite non majorée, .


B′￼ C A −
π
3

b′￼− a
c − a

= e−i π
3

b′￼− a = (c − a) e−i π
3

b′￼= ce−i π
3 + a (1 − e−i π

3 )
C′￼ B A

π
3

c′￼− a
b − a

= ei π
3 c′￼− a = (b − a) ei π

3

bei π
3 = c′￼− a (1 − ei π

3 ) b = c′￼e−i π
3 + a (1 − e−i π

3 )

b′￼− b = ce−i π
3 + a (1 − e−i π

3 ) − c′￼e−i π
3 − a (1 − e−i π

3 ) = (c − c′￼) e−i π
3

b′￼− b
c − c′￼

= e−i π
3 1 −

π
3

Ω
π
3

(ΩB; ΩC) = −
2π
3 (ΩC; ΩA) = −

2π
3 (ΩA; ΩB) = −

2π
3

A′￼′￼B′￼′￼C′￼′￼ ΩA′￼′￼= ΩA
ΩA

ΩB′￼′￼= ΩB
ΩB

ΩC′￼′￼= ΩC
ΩC

Ω

ΩA
ΩA

+
ΩB
ΩB

+
ΩC
ΩC

= 0

Ω

(un)n∈ℕ
∀A > 0, ∃p ∈ ℕ, up ⩾ A
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Comme de plus  est croissante, , ce qui est bien la définition de la divergence vers 

.


2. Soit  croissante et majorée.


Notons .

Par définition de la borne supérieure,  (sinon  est un majorant).


Et comme  est croissante, , ce qui est la définition de la limite.


3. Par symétrie (en considérant  pour formaliser la démonstration ou on la refait complétement 
en inversant les inégalités !), une suite décroissante est convergente si et seulement si elle est minorée.


II.


Soit  définie par .


1.  correspond à une approximation par excès de l’air sous la courbe de la fonction inverse.


2. a. .


Or pour , , donc .


b. D’après le critère de Cauchy,  est divergente.


3. a.  et donc (on sait que ) .


La fonction étant intégrable sur , ce qui donne 


Et finalement .


b. En sommant l’inégalité précédente jusqu’à , on trouve : .


Or ,





Et 


Finalement, on a bien l’inégalité recherchée : 


(un)n∈ℕ
∀n ⩾ p, un ⩾ A

+∞

(un)n∈ℕ

l = sup {un, n ∈ ℕ}
∀ϵ > 0, ∃n0 ∈ ℕ, l − ϵ ⩽ un0

⩽ l l − ϵ

(un)n∈ℕ
∀n ⩾ n0, l − ϵ ⩽ un ⩽ l

(−un)n∈ℕ

(an)n∈ℕ*
an =

n

∑
k=1

1
k

an

∀n ⩾ 1, a2n − an =
2n

∑
k=1

1
k

−
n

∑
k=1

1
k

=
2n

∑
k=n+1

1
k

n + 1 ⩽ k ⩽ 2n
1
k

⩾
1

2n
a2n − an ⩾

2n

∑
k=n+1

1
2n

=
1
2

(an)n∈ℕ*

∀t ∈ [k ; k + 1], k ⩽ t ⩽ k + 1 k ⩾ 1
1

k + 1
⩽

1
t

⩽
1
k

[k ; k + 1] ∫
k+1

k

1
k

dt ⩽ ∫
k+1

k

1
t

dt ⩽ ∫
k+1

k

1
k + 1

dt

1
k + 1

⩽ ∫
k+1

k

1
t

dt ⩽
1
k

n − 1
n−1

∑
k=1

1
k + 1

⩽
n−1

∑
k=1

∫
k+1

k

1
t

dt ⩽
n−1

∑
k=1

1
k

n−1

∑
k=1

1
k + 1

=
n

∑
k=2

1
k

= an − 1

n−1

∑
k=1

∫
k+1

k

1
t

dt = ∫
n

1

1
t

dt = [ln (t)]n
1

= ln (n)

n−1

∑
k=1

1
k

= an−1 ⩽ an

an − 1 ⩽ ln (n) ⩽ an
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c. En , on a .


4. Remarque : l’énoncé est manifestement faux, le produit de 2 quantités divergentes vers  ne peut pas 
converger. Je vais considérer la suite  qui semble la plus naturelle, mais qui n’est pas définie en 

.


On considère la suite  définie par .


L’encadrement de la question 3 devient (les étapes sont identiques, car la quantité  par laquelle on 

divise ne dépend pas de la variable ) : , ou en utilisant  :


.


Et on a donc bien .


Partie B

I.
1. a. Par définition de la convergence de  vers , on peut affirmer que :








Or 


Et donc 


Finalement on a bien .


b. Comme  est fixé dans l’inégalité précédente, .


Cela permet de conclure que  converge vers .


2. Pour généraliser, on va montrer que si  tend vers ,  tend vers .

La démonstration est globalement la même, avec  qui va servir à encadrer , puis on écrit 

 qui permet de conclure de la même façon que pour la 

limite en .


II.


 et .


+∞ an ∼ ln (n)

+∞
(bn)

n = 1

(bn)n⩾2
bn =

an

ln (n)
ln(n)

k
an − 1
ln (n)

⩽ 1 ⩽
an

ln (n)
bn

bn −
1

ln (n)
⩽ 1 ⩽ bn

lim
n→+∞

bn = 1

(un) 0
∀ϵ > 0, ∃n0 ∈ ℕ, ∀n ⩾ n0, − ϵ ⩽ un ⩽ ϵ

vn =
1
n (

n

∑
k=1

uk) =
1
n (

n0

∑
k=1

uk) +
1
n

n

∑
k=n0+1

uk

−(n − n0 − 1) ϵ ⩽
n

∑
k=n0+1

uk ⩽ (n − n0 − 1) ϵ

−ϵ ⩽ −
n − n0 − 1

n
ϵ ⩽

1
n

n

∑
k=n0+1

uk ⩽
n − n0 − 1

n
ϵ ⩽ ϵ

1
n (

n0

∑
k=1

uk) − ϵ ⩽ vn ⩽
1
n (

n0

∑
k=1

uk) + ϵ

n0 lim
n→+∞

1
n (

n0

∑
k=1

uk) = 0

(vn)n∈ℕ*
0

(un) l (vn) l
ϵ un − l

vn − l =
1
n (

n

∑
k=1

uk) − l =
1
n (

n

∑
k=1

(uk − l))
0

x1 = 1 ∀n ∈ ℕ*, xn+1 =
xn (1 + xn)

1 + 2xn
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1. , donc on a bien .


Comme la propriété est vraie pour , supposons qu’elle est vraie au rang  et étudions le rang  :


Considérons la fonction  : .


 est bien définie et dérivable sur l’intervalle considérée et 

.


Or sur ,  et , donc  et  est croissante.


Comme  et , on assure que .


On a donc bien , qui nous confirme l’hérédité de la propriété.


Et on conclut que .


2. 


Et la suite  est décroissante.


3.  est décroissante et minorée donc converge.

Elle converge forcément vers un point fixe de  donc .


4. .


5. On pose pour , .


Comme .


6. Par définition de , elle représente une somme téléscopique.


On a : .


Comme ,  et .


III.

1. Reprenons la définition de la convergence de  vers une limite  :


.


On peut par ailleurs écrire : .


On conclut que  converge vers .


x2 =
x1 (1 + x1)

1 + 2x1
=

2
3

0 < x2 < 1

n = 2 n n + 1

f ∀x ∈ ]0; 1[, f (x) =
x (1 + x)
1 + 2x

f

∀x ∈ ]0; 1[, f ′￼(x) =
(1 + 2x) (1 + 2x) − 2x (1 + x)

(1 + 2x)2

]0; 1[ 1 + 2x > 2x 1 + 2x > 1 + x f ′￼(x) > 0 f

f (0) = 0 f (1) =
2
3

∀x ∈ ]0; 1[, f (x) ∈ ]0; 1[
xn+1 = f (xn) ∈ ]0; 1[

∀n ⩾ 2, xn ∈ ]0; 1[

∀n ∈ ℕ*, xn+1 − xn =
xn (1 + xn)

1 + 2xn
− xn =

xn (1 + xn) − xn (1 + 2xn)
1 + 2xn

=
−x2

n

1 + 2xn
< 0

(xn)
(xn)

f 0

1
xn+1

−
1
xn

=
1 + 2xn

xn (1 + xn)
−

1
xn

=
1 + 2xn − 1 − xn

xn (1 + xn)
=

1
1 + xn

n ∈ ℕ* un =
1

xn+1
−

1
xn

=
1

1 + xn

xn → 0, un → 1

(vn)

vn =
1
n (

n

∑
k=1

uk) =
1
n (

n

∑
k=1

1
xk+1

−
1
xk ) =

1
n ( 1

xn+1
− 1) =

1
n xn+1

−
1
n

=
1 − xn+1

n xn+1

vn → 1 n xn+1 ∼ 1 − xn+1 xn ∼
1
n

(xn)n⩾1
l ∈ ℝ

∃l ∈ ℝ, ∀ϵ > 0, ∃n0 ∈ ℕ, ∀n ⩾ n0, xn − l ⩽
ϵ
2

xn+1 − xn = xn+1 − l − xn + l ⩽ xn+1 − l + xn − l ⩽ ϵ

(xn+1 − xn)n⩾1
0
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2. a. D’après la partie I., la convergence de la suite assure la convergence au sens de Cesaro vers la 
même limite .


Or 


 et , donc .


Finalement, on conclut que  converge vers .


b. Si ,  diverge trivialement, car  (Remarque : le résultat peut se retrouver par  ou 

)


c. Etudions un exemple avec , qui diverge vers .


 qui tend pourtant bien vers .


Partie C

I.

1.  prend alternativement la valeur  et , donc la somme de ses termes alternativement  et .


 converge trivialement vers 


2.  constitue un contre-exemple de la réciproque de la proposition de la partie précédente : la suite 
diverge, mais converge au sens de Cesaro.


II.

1. Si  et idem pour .


2. 





3. a. En passant a la limite sur la première relation (assurée par l’hypothèse de convergence de ), 

on tire immédiatement que  converge vers .


En sommant les 2 relations, et en nommant  la limite considérée :

 et 


b. D’après la question précédente, il faudrait qu’à la fois  et  tendent vers , ce qui est 
impossible.

L’hypothèse de convergence de  est donc absurde et  diverge.


c. Comme suggéré, passons par la somme  qui est une somme géométrique (plutôt la 

moyenne d’une somme) et dont  est la partie imaginaire.


l

1
n

n

∑
k=1

(xn+1 − xn) =
1
n (xn+1 − x1) =

xn+1

n
−

x1

n

1
n

n

∑
k=1

(xn+1 − xn) → l
x1

n
→ 0

xn+1

n
∼

xn+1

n + 1
→ l

( xn

n )
n⩾1

l

l ≠ 0 (xn)n⩾1
xn ∼ nl

xn

n
xn+1 − xn

∀n ⩾ 1, xn = ln (n) +∞

xn+1 − xn = ln (n + 1) − ln (n) = ln ( n + 1
n ) 0

(un)n⩾1
1 −1 1 0

(vn)n⩾1
0

(un)n⩾1

α ≡ 0 [π], ∀n , un = 0 vn

un+2 − un = sin ((n + 2) α) − sin (nα) = 2sin (α) cos ((n + 1) α) = 2sin (α) cn+1

un+2 + un = sin ((n + 2) α) + sin (nα) = 2sin ((n + 1) α) cos (α) = 2cos (α) un+1

(un)n⩾1

(cn)n⩾1
0

l
un = cos (α) un+1 − sin (α) cn+1 ⇒ l = cos (α) l l = 0

cos (nα) sin (nα) 0

(un)n⩾1 (un)n⩾1

Sn =
1
n

n

∑
k=1

eikα

vn
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Utilisons l’expression conjuguée du dénominateur (ce qui est légitime car ) : 



D’où .


Le module des éléments composant la fraction sont bornés, donc  converge vers .


III.

1. Par croissance de , on sait que .


En sommant,  ou .


2. Par définition de , on obtient directement le résultat demandé (et même sans la faute de frappe), 




3. Comme  converge, elle est bornée et donc majorée (ainsi que la suite extraite ).


L’inégalité de la question précédente,  est également majorée, donc convergente.


Notons  la limite de  et  celle de .


En utilisant une nouvelle fois la question précédente, on trouve : .


Par ailleurs, la suite  étant croissante, sur le même principe que la 1ère question, on obtient : 

.


Et donc .


On conclut donc que  et que  et  ont la même limite.


4. Par symétrie, on obtient le même résultat pour une suite décroissante.


On peut donc énoncé qu’une suite monotone converge si et seulement si sa moyenne de Cesaro converge 
et que les 2 ont alors la même limite.


Sn =
1
n

n

∑
k=1

eikα =
1
n

× eiα 1 − einα

1 − eiα

α ≠ 0 [π]
(1 − cos (α) − isin (α)) (1 − cos (α) + isin (α)) = (1 − cos (α))2 + (sin (α))2 = 2 (1 − cos (α))

Sn =
1
n

×
eiα (1 − e−iα) (1 − einα)

2 (1 − cos (α))
=

1
n

× (eiα − 1) (1 − einα)
2 (1 − cos (α))

Sn 0

(un)n⩾1
∀k ⩾ n + 1, un+1 ⩽ uk

2n

∑
k=n+1

un+1 ⩽
2n

∑
k=n+1

uk nun+1 ⩽
2n

∑
k=n+1

uk

(vn)n⩾1

un+1 ⩽
1
n

2n

∑
k=n+1

uk =
1
n (

2n

∑
k=1

uk −
n

∑
k=1

uk) = 2v2n − vn

(vn)n⩾1 (v2n)n⩾1

(un)n⩾1

v (vn)n⩾1
u (un)n⩾1

u ⩽ 2v − v = v

(un)n⩾1

vn =
1
n

n

∑
k=1

uk ⩽
1
n

n

∑
k=1

un = un

v ⩽ u

v = u (un)n⩾1 (vn)n⩾1
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