
Problème n°1




Partie I

1. .





2.  et  est paire.


 et  est impaire.


3. 3.1 -




On déduit donc .


3.2 -  et 


De plus .


Finalement on a bien l’encadrement .


4. 4.1 -  et  sont dérivables sur  comme somme et différence de fonctions dérivables.

On trouve immédiatement : 





Et 


4.2 - On déduit que  est strictement croissante sur .

D’après les questions précédentes,  est décroissante sur  et croissante sur 



4.3 - 


∀x ∈ ℝ, c (x) =
ex + e−x

2
 et s (x) =

ex − e−x

2

c(0) = 1, s(0) = 0
c(1) = 1,54, s(1) = 1,18

∀x ∈ ℝ, c (−x) =
e−x + ex

2
= c(x) c

∀x ∈ ℝ, s (−x) =
e−x − ex

2
= − s(x) s

∀x ∈ ℝ, [c (x)]2 − [s (x)]2 = ( ex + e−x

2 )
2

− ( ex − e−x

2 )
2

=
1
4 (e2x + e−2x + 2 − e2x − e−2x + 2) = 1

∀x ∈ ℝ, [c (x)]2 = 1 + [s (x)]2 ⩾ 1

∀x ∈ ℝ+, ex ⩾ e−x s(x) ⩾ 0

c(x) − s(x) =
ex + e−x

2
−

ex − e−x

2
= e−x > 0

0 ⩽ s(x) < c(x)

c s ℝ

∀x ∈ ℝ, c′￼(x) =
ex − e−x

2
= s(x)

∀x ∈ ℝ, s′￼(x) =
ex + e−x

2
= c(x)

s ℝ
c ℝ− ℝ+
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5. 5.1 - On va étudier la fonction .

 est dérivable sur  et on a  donc  y est croissante avec .


Finalement on a bien 


5.2 Procédons de la même façon avec .


 est dérivable sur  et on a  donc  y est croissante avec .


Finalement on a bien 


La dernière inégalité s’obtient encore avec la même méthode appliquée sur la fonction 

, dont la fonction dérivée est .


On déduit 


6. 6.1 - On va étudier la fonction .

 est dérivable sur  et on a  donc  y est décroissante avec .


Finalement on a bien 

De la même façon, 


6.2 - A nouveau, les inégalités s’enchaînent logiquement et on trouve directement :





Et 


6.3 - D’après les questions précédentes, on a l’encadrement 


D’où on déduit (par croissance de ) .


Pour , on obtient l’encadrement  et ainsi 


.


Partie II


1. Procédons comme indiquer par intégration par parties :




Pour prouver la nouvelle égalité demandée, nous allons procéder à nouveau par intégration par parties :





f : x ↦ s(x) − x
f ℝ ∀x ∈ ℝ+, f ′￼(x) = c(x) − 1 ⩾ 0 f f (0) = 0

∀x ∈ ℝ+, x ⩽ s(x)

g : x ↦ c(x) −
x2

2
− 1

g ℝ ∀x ∈ ℝ+, g′￼(x) = f (x) ⩾ 0 f g(0) = 0

∀x ∈ ℝ+,
x2

2
− 1 ⩽ c(x)

h : x ↦ s(x) −
x3

6
− x g

∀x ∈ ℝ+,
x3

6
− x ⩽ s(x)

f : x ↦ s(x) − 2x
f ℝ ∀x ∈ [0; 1], f ′￼(x) = c(x) − 2 ⩽ 0 f f (0) = 0

∀x ∈ [0; 1], s(x) ⩽ 2x
∀x ∈ [0; 1], c(x) ⩽ 1 + x2

∀x ∈ [0; 1], s(x) ⩽ x +
x3

3
∀x ∈ [0; 1], c(x) ⩽ 1 +

x2

2
+

x4

12

∀x ∈ [0; 1], 0 ⩽ c(x) − (1 +
x2

2 ) ⩽
x4

12

x ↦
x4

12
∀x ∈ [0; 1], 0 ⩽ c(x) − (1 +

x2

2 ) ⩽
1

12

s ∀x ∈ [0; 1], 0 ⩽ s(x) − (x +
x3

6 ) ⩽
x3

6

∀x ∈ [0; 1], 0 ⩽ s(x) − (x +
x3

6 ) ⩽
1
6

1 + ∫
x

0
(x − t) c (t) dt = 1 + [(x − t)s(t)]x

0
− ∫

x

0
− s(t)dt = 1 + 0 + [c(t)]x

0
= 1 + c(x) − 1 = c(x)

∫
x

0

(x − t)3

3!
c (t) dt = [ (x − t)3

3!
s(t)]

x

0

− ∫
x

0
−

(x − t)2

2
s(t)dt = ∫

x

0

(x − t)2

2
s(t)dt
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.


D’où le résultat demandé : 


2. Nous allons procéder par récurrence en remarquant que la question précédente correspond au résultat 
cherché pour .


Considérons donc que le résultat est vrai jusqu’au rang  et étudions 








On applique alors l’hypothèse de récurrence pour écrire :





Et finalement on vérifie bien le résultat au rang  : .


Ce qui achève la démonstration.


Et .


3. Reprenons une intégration par parties  pour  majorer l’intégrale à étudier :


.


Sur , on majore  et donc 




Et finalement on arrive bien sur la majoration demandée : 


4. 4.1 - 


Si , l’inégalité est vérifiée dès .


Sinon, on choisit le plus petit entier  ou .


= [ (x − t)2

2
c(t)]

x

0

+ ∫
x

0
(x − t) c(t)dt = −

x2

2
+ c(x) − 1

c(x) = 1 +
x2

2
+ ∫

x

0

(x − t)3

3!
c (t) dt

n = 1

n ∫
x

0

(x − t)2n+3

(2n + 3)!
c (t) dt

∫
x

0

(x − t)2n+3

(2n + 3)!
c (t) dt = [ (x − t)2n+3

(2n + 3)!
s(t)]

x

0

+ ∫
x

0

(x − t)2n+2

(2n + 2)!
s (t) dt = ∫

x

0

(x − t)2n+2

(2n + 2)!
s (t) dt

= [ (x − t)2n+2

(2n + 2)!
c (t)]

x

0

+ ∫
x

0

(x − t)2n+1

(2n + 1)!
c (t) dt = −

x2(n+1)

(2 (n + 1))!
+ ∫

x

0

(x − t)2n+1

(2n + 1)!
c (t) dt

∫
x

0

(x − t)2n+3

(2n + 3)!
c (t) dt = −

x2(n+1)

(2 (n + 1))!
+ c(x) − 1 −

n

∑
k=1

x2k

(2k)!
= c(x) − 1 −

n+1

∑
k=1

x2k

(2k)!

n + 1 c(x) = 1 +
n+1

∑
k=1

x2k

(2k)!
+ ∫

x

0

(x − t)2n+3

(2n + 3)!
c (t) dt

∀n ∈ ℕ*, c(x) = 1 +
n

∑
k=1

x2k

(2k)!
+ ∫

x

0

(x − t)2n+1

(2n + 1)!
c (t) dt

∫
a

0

(a − t)2n+1

(2n + 1)!
c(t)dt = [ (a − t)2n+2

(2n + 2)!
c(t)]

a

0

+ ∫
a

0

(a − t)2n+2

(2n + 2)!
s(t)dt =

a2n+2

(2n + 2)!
+ ∫

a

0

(a − t)2n+2

(2n + 2)!
s(t)dt

[0; a] (a − t)2n+2

(2n + 2)!
⩽

a2n+2

(2n + 2)!

∫
a

0

(a − t)2n+2

(2n + 2)!
s(t)dt ⩽

a2n+2

(2n + 2)! ∫
a

0
s (t) dt =

a2n+2

(2n + 2)! (c(a) − c(0))

∫
a

0

(a − t)2n+1

(2n + 1)!
c(t)dt ⩽

a2n+2

(2n + 2)!
c (a)

vn+1

vn
=

a2n+1

(2n + 1)!
×

(2n)!
a2n

=
a

2n + 1

a ⩽
3
2

n = 1

N ⩾
2a − 1

2
N = ⌊ 2a − 1

2 ⌋ + 1
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4.2 - De l’inégalité précédente, on déduit immédiatement  et donc le résultat demandé 

.


4.3 - Ce résultat nous permet d’affirmer que la suite converge et que .


5. Repartons du résultat de la question 2 : .


De là,  (d’après la question 3)


Et donc  (suivant le résultat de la question 4).


Partie III


1. D’après l’équation donnée pour , .


Si , on a  et si on considère , on peut écrire .


2. .


Or, quand  et on peut utiliser le développement limité 

 et ainsi 


D’où l’asymptote.


3. En transformant  en , l’équation n’est pas changée et on a une symétrie par rapport à l’axe des 
ordonnées.


Idem en transformant  en  et l’axe des abscisses est également axe de symétrie.


4. Représentation graphique :


vn

vN
⩽

1
2n−N

vn ⩽
1

2n−N
vN

lim
n→+∞

vn = 0

∀n ∈ ℕ*, c(a) = 1 +
n

∑
k=1

a2k

(2k)!
+ ∫

a

0

(a − t)2n+1

(2n + 1)!
c (t) dt

un − c(a) = ∫
a

0

(a − t)2n+1

(2n + 1)!
c (t) dt ⩽

a2n+2

(2n + 2)!
c (a)

lim
n→+∞

un − c(a) = 0

ℋ x2 − y2 = 1
x ∈ [1; + ∞[ y2 = x2 − 1 y ⩾ 0 y = x2 − 1

f (x) − x = x2 − 1 − x = x 1 −
1
x2

− x

x → + ∞,
1
x2

→ 0

1 −
1
x2

= 1 −
1

2x2
+ o ( 1

x2 ) f (x) − x = x2 − 1 − x = −
1

2x
+ o(

1
x

)

x −x

y −y
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5. 5.1 - On découpe l’air grisée en 4 « triangles » identiques.


L’air du triangle entier est  à laquelle il faut soustraire l’aire sous la courbe entre les 

points d’abscisses  et , qui vaut par définition .

Finalement, .


5.2 -  est dérivable sur  comme produit, composée et somme de fonctions dérivables sur cet 
intervalle.





 est donc strictement croissante.


5.3 -  et donc , d’où le résultat.


5.4 - (i) Comme les 2 fonctions considérées sont positives, on peut écrire : 


, dont on déduit .


(ii) De ce qui précède, on a que  est une bijection de  sur  et donc que tout réel positif 
noté  a un unique antécédent noté .

On peut bien écrire : 


6. 6.1 - Comme , on a :


 et .


De plus 


Et donc  est bien orthonormal.


6.2 - On a  et 


Donc  et 


6.3 - .


Donc dans ce repère la fonction dont la courbe est  est .


7. Dans , les coordonnées de  sont .


7.3 - Les points de la courbe ont pour coordonnées .


L’aire correspondant à  vaut donc 


Et finalement, 


x f (x)
2

=
x x2 − 1

2
x 1 F(x)

𝒜 (x) = 4g (x)

g ]1; + ∞[

∀x ∈ ]1; + ∞[, g′￼(x) =
x2 − 1

2
+

2x2

4 x2 − 1
− x2 − 1 =

x2

2 x2 − 1
−

x2 − 1
2

=
1

2 x2 − 1
> 0

g

∀x > 1, x2 − 1 ⩽ x
1

x2 − 1
⩾

1
x

g(x) = ∫
x

1
g′￼(t)dt ⩾ ∫

x

1

1
2t

dt =
1
2

ln (x) lim
x→+∞

g(x) = + ∞

𝒜 [1; + ∞[ [0; + ∞[
2a xa

∀a > 0, ∃! xa ⩾ 1 𝒜(xa) = 2a

i ⊥ j

I
2

=
1
2

∥ i − j ∥2= 1 J
2

=
1
2

∥ i + j ∥2= 1

I . J =
1

2 ( i − j ) . ( i + j ) =
1

2
(1 + 0 − 0 − 1) = 0

(O; I ; J )
X =

x − y

2
Y =

x + y

2

x =
1

2
(X + Y ) y =

1

2
(−X + Y )

x2 − y2 = (x + y)(x − y) =
1
2

(X + Y + Y − X )(X + Y − Y + X ) = 2XY = 1

ℋ h : X ↦
1

2X

(O; I ; J ) A ( 1

2
;

1

2 )
c (a); s (a)

g (x)
a
2

𝒜 (x) = 2a
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Problème n°2

Partie I


1. Propriété obtenue par définition du demi-plan ouvert contenant  :


On peut écrire :  avec  colinéaire à . D’où le résultat.


2.  Soit  un point intérieur à . (On considère que  ne fait partie d’aucun côté).

On note  l’intersection de  avec .

Avec  et , on peut écrire :





Et  

avec  de même signe, ainsi que . On va donc considérer qu’ils sont tous les 4 du même 
signe.


Or 


Et 


Finalement, , d’où le résultat.


  est le barycentre de  avec des coefficients de même signe (nous les considérons tous positifs 
sans altérer le raisonnement).

On peut écrire : 


Or 


On a alors : .


D’après la question précédente,  est dans le demi-plan contenant  par rapport à .


Par symétrie de la propriété par rapport aux 3 sommets, on arrive au résultat demandé.


Partie II

1. 1.1 - Les points  de la bissectrice  sont à égale distance de  et .


En particulier, si ,  d’où le résultat 


1.2 - Dans le repère , la droite  passe par les points  et  et son équation 

est : .


1.3 - Pour trouver les coordonnées de , on utilise les équations des 2 droites et donc : .


Donc :  et 


2.  2.1 - La réponse précédente signifie : 


A
y

HA
HA =

y
HA

HB +
y

HA
BA HB BC

( ⇒ ) M A BC M
D (A M ) [BC]

D ∈ [BC] M ∈ [A D]
mbDB + mcDC = 0

maMA + md MD = 0
(mb, mc) (ma, md)

mbDB + mcDC = mbDM + mbMB + mcDM + mcMC = 0
DM =

ma

md
MA

(mb + mc)
ma

md
MA + mbMB + mcMC = 0

( ⇐ ) M A BC

maMA + mbMB + mcMC = 0
maMA + mbMB + mcMC = (ma + mb + mc) MB + maBA + mcBC

BM =
ma

(ma + mb + mc)
BA +

mc

(ma + mb + mc)
BC

M A (BC )

M(x ; y) ΔA (A B) (AC )
x = 1 y =

γ
β

y =
γ
β

x

(A; A B; AC) (BC ) B (1; 0) C (0; 1)
y = − x + 1

A′￼ γ
β

x = − x + 1

xA′￼=
β

γ + β
yA′￼=

γ
γ + β

A A′￼= β
γ + β

A B +
γ

γ + β
AC
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Par propriété du barycentre, on peut poser  et 


2.2 - Le barycentre des points  est également le barycentre des points 
 et donc appartient à .


Par symétrie des propriétés utilisées précédemment et dans la question 2.1, on trouve que le barycentre 
recherché est .


2.3 - On retrouve que  est à l’intérieur du triangle d’après la 1ère partie.


Partie III

1. Le cercle circonscrit est l’intersection des médiatrices des 3 côtés.

Par construction du repère, .


Pour calculer , nous utilisons la propriété du centre du cercle :  ou  (les distances 
étant positives).


Ceci s’écrit dans le repère orthonormal considéré : 


D’où .


Et finalement : 


2. Ecrivons : 


D’après la question précédente, on obtient immédiatement le résultat chercher : 


3. D’après la partie I, pour que  et  soient dans le même demi-plan, il faut que  et  soient de même 

signe. Suivant le résultat ci-dessus, il faut  autrement dit,  aigu.


4. Il faut 3 angles aigus. (La réponse précédente donne l’équivalence directement)


Partie IV

1. Partant du découpage proposé, on sait que la hauteur de chacun de ces triangles vaut . Les bases 

étant les côtés, on trouve bien la formule : .


2. 2.1 - On a . La formule est immédiate :
.


2.2 - Par construction  et par la question 3 de la partie précédente, les 3 angles sont aigus et 




2.3 - Par construction,  et  ont un angle droit et partage l’angle , ils sont donc 
semblables.


 et  ont un angle droit.


λ = β μ = γ

(A, α) (B, β) (C, γ)
(A, α) (A′￼, β + γ) ΔA

ω

ω

xO = 0

yO OA = OB OA2 = OB2

(xA)2 + (yA − yO)2 = ( −α
2 )

2

+ (yO)2

(xA)2 + (yA)2 + (yO)2 − 2yAyO =
α2

4
+ (yO)2

yO =
yA

2
+

(xA)2 − α2

4

2yA
=

yA

2
+

(xA − α
2 ) (xA + α

2 )
2yA

A B . AC = (−
α
2

− xA) ( α
2

− xA) + (yA)2

A B . AC = 2yOyA

O A yO yA

cos ( ̂BAC ) > 0 ̂BAC

r

𝒜 (A BC ) = ( α + β + γ
2 ) r

OMA = OMB = OMC = r
2𝒜 (A BC ) = αOMA + βOMB + γOMC

xHA
= xA

HA ∈ [BC]
A BHB ACHC

̂BAC

A BHB BOMA
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De plus, en tant qu’angles interceptant le même arc, on a : , mais  étant isocèle, 
, d’où le résultat.


2.4 - Les triangles étant semblables, on peut écrire :  et .


On obtient donc directement .


Symétriquement, on va obtenir :






2.5 - En additionnant les différentes équations on peut écrire :




D’où .


En reprenant la question 1, on obtient : 



Et on déduit le résultat demandé : 


3. 3.1 - Si  appartient à un côté du triangle, le triangle est rectangle.


3.2.1 - 


Et  et ainsi 


Finalement : .


De plus, dans un triangle rectangle,  et 


On conclut donc : .


3.2.2 - Dans cette configuration, .


De plus par le théorème de Thalès,  et .


Donc :  ce qui est bien l’écriture de l’équation .


̂BOC = 2 ̂BAC OBC
̂BOC = 2 ̂BOMA

OMA

A HB
=

R
γ

R
β

=
OMA

A HC

(β + γ) OMA = R (A HB + A HC)

(α + γ) OMB = R (BHA + BHC)
(β + α) OMC = R (CHB + CHA)

(β + γ) OMA + (β + α) OMC + (α + γ) OMB = R (α + β + γ)
(α + β + γ) (OMA + OMB + OMC) = R (α + β + γ) + αOMA + βOMB + γOMC

(α + β + γ) (OMA + OMB + OMC) = R (α + β + γ) + r (α + β + γ)
OMA + OMB + OMC = R + r

O

R =
α
2

𝒜 (A BC ) = ( α + β + γ
2 ) r =

βγ
2

r =
βγ

α + β + γ

R + r =
α
2

+
βγ

α + β + γ

r =
β + γ − α

2
R =

α
2

R + r =
β + γ

2

OMA = 0

OMB =
γ
2

OMC =
β
2

R + r =
β + γ

2
(2)
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