
BAC Tunisie 2020


Exercice 1

1. a) Si on décompose les opérations : 










Et donc 


On peut considérer  comme une rotation de centre  et d’angle .

On sait que la composition de plusieurs rotations est une rotation ou une translation. Dans notre cas, la 
somme des angles de rotation est , la composée est donc une translation.

Elle envoie  sur lui-même, c’est donc l’identité.


b) On sait que l’imagine de  par la composée de transformations est lui-même.

Or :  (centre de rotation) et  (par construction).


On en déduit que  et par définition de  que  est isocèle rectangle en 


c)  étant isocèle, on a déjà  (médiane = hauteur), autrement dit .


De plus, par construction des points  et  comme milieu de  et  respectivement, on déduit 

(Théorème de Thalès) :  et 


On trouve la même disposition en considérant  et  ce qui donne  et .


Comme on peut ajouter que  et  sont semblables, on a .


Finalement, on a bien que  est un carré.


2. a) Par définition de la symétrique glissante,  est directeur de , qui passe par .

Par construction de  (milieu de ) et comme  est un carré, on a .


Finalement, on a bien 


b) Si on décompose : 

 et , donc 


 et  (on considère , image de  par symétrie d’axe  et on a bien ), 
donc 


c) Il faut montrer que  est invariant par  :  (point défini précédemment)

Puis on a bien que  « revient » sur  par symétrie d’axe , puis la translation ramène sur .

Donc 


En ajoutant à cela les 2 images de la question précédente, on a 3 points non alignés dont les images 
correspondent à la rotation de centre  et d’angle .


On conclut que  est la rotation de centre  et d’angle .


r1 (A) = C
SL (C ) = B
r2 (B) = A

r2 ∘ SL ∘ r1 (A) = A

SL L π

2π
A

G
r1(G ) = G SL(G ) = F

r2(F ) = G r2 GEF E

GEF (EL) ⊥ (GL) (IL) ⊥ (JL)

I K [EL] [EG]
(IK )//(JL) IK =

GL
2

= JL

K J (IL)//(JK ) IL = KJ

GEF GEL EL = LG

L JK I

LK Δ I
H [LF ] L JK I (HI )//(LK )

Δ = (IH )

S(LE ) (J ) = H φ (H ) = I g (J ) = I
S(LE ) (L) = L φ (L) = E L′￼ L Δ L′￼E = LK

g (L) = E

K g S(LE ) (K ) = L′￼
L′￼ L Δ K

g(K ) = K

K −
π
2

g K −
π
2
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3. a) Les antidéplacements dans le plan sont les symétries axiales et les symétries glissantes.

Or pour que  soit une symétrie axiale, il faudrait que  et  soient parallèles ou perpendiculaires.


Comme ça n’est pas le cas,  est une symétrie glissante.


b)  est composée de la symétrie par rapport à  et de la translation de vecteur .

Par cette transformation  devient  puis .


4. La composée d’une symétrie glissée et d’une rotation est une symétrie glissée.

Si ,  et 

Et si ,  et 


On le vérifie également pour  : par construction des points,  est telle que .

Et , donc par définition .


Les points sont symétrique par rapport à .


Exercice 2

1. a) on peut écrire  avec .

On a donc  et donc 


Et on vérifie que .


b)  et  sont sur l’axe des réels. Pour qu’ils soient alignés avec , il faut donc que  soit également sur 
l’axe des réels, donc il faut .


2. a) 


En écriture trigonométrique, on a .


Et donc 


Ainsi la multiplication par  correspond à une rotation de centre  et d’angle .


b) Si  sont alignés, on a la relation sur leurs affixes : 


Or 


f (JI ) (L E )

f

f (JI ) JI
L K E

M = L M′￼= E M′￼′￼= E
M = J M′￼= I M′￼′￼= I

M = E M′￼ K M′￼= LK
φ (E ) = M′￼ M′￼′￼= S(LE )(M′￼)

(L E )

a = x + iy, (x , y) ∈ ℝ2 x2 + y2 = 2
a = x − iy R = a + a = x + iy + x − iy = 2x

R ∈ (O, u )
O R Q Q

a ∈ ℝ

ia = i (x + iy) = − y + i x

a = reiθ, r ∈ ℝ+, θ ∈ [0; 2π]
ia = ei π

2 reiθ = rei(θ + π
2 )

i O
π
2

A, P, M
ia − 1
z − 1

∈ ℝ

ia − 1
z − 1

∈ ℝ ⇔
ia − 1
z − 1

=
ia − 1
z − 1
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Et 







Or 


Donc 


Finalement, on trouve bien l’équivalence :

 alignés 


c) Reprenons le même procédé, 


Et 





On conclut donc 


d) Par définition l’affixe de  doit vérifier les 2 équations des questions précédentes.

De la question précédente, on tire .

En le réinjectant dans la relation de la question b), on trouve 


Ce qui donne 


3. a) 


 est l’image de  par la composée d’une homothétie de contre  et de rapport  et d’une rotation de 

centre  et d’angle .


b) 


c) Remarque : l’intuition nous oriente vers un mouvement circulaire… J’invite dans ces cas là à chercher des 
pistes sur la calculatrice ou Géogebra selon les circonstances dans lesquelles est réalisé l’exercice.

Calculons 

.


ia − 1
z − 1

=
ia − 1
z − 1

⇔ (ia − 1) (z − 1) = (ia − 1) (z − 1)

⇔ ia z − ia − z = iaz − ia − z
⇔ z (ia − 1) + z (−ia + 1) = ia − ia

ia = −y + i x = − y − i x = − ia

z (ia − 1) + z (−ia + 1) = ia − ia ⇔ z (ia − 1) + z (ia + 1) = ia + ia = i (a + a )

A, P, M ⇔ z (ia − 1) + z (ia + 1) = i (a + a )

(AP) ⊥ (OM ) ⇔
ia − 1

z
∈ iℝ

ia − 1
z

∈ iℝ ⇔
ia − 1

z
= −

ia − 1
z

⇔ z (ia − 1) = − z (−ia − 1) ⇔ z (ia + 1) − z (ia − 1) = 0

(AP) ⊥ (OM ) ⇔ z (ia + 1) − z (ia − 1) = 0

H
ZH (ia + 1) = ZH (ia − 1)

2ZH (ia + 1) = i (a + a )

ZH =
i (a + a )
2 (ia + 1)

ZN =
2
i

ZH = − 2iZH

N H O −2
O

π
2

ZH −
1
2

=
i (a + a )
2 (ia + 1)

−
1
2

=
i (a + a ) − ia − 1

2 (ia + 1)
=

ia − 1
2 (ia + 1)

=
1
2

ia − 1
−ia + 1

= 1
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Donc  parcours le cercle de centre  et de rayon .


Et d’après la question précédente  parcours le cercle de centre  et de rayon .


Ci-dessous la représentation graphique :


Exercice 3

Remarque : dans cet exercice, j’utilise la notation entre crochets pour les modulos. Il n’y a pas de raison 
particulière à part que c’est un réflexe. Cela ne change évidemment rien : 


1. a) par définition de .


Comme  est pair, on a bien  et impair.


b) Regardons les 1ères puissances de  :

 









Suite à cette initialisation, nous allons montrer par récurrence que : .


Supposons donc la propriété vraie au rang  et étudions le rang .

, donc 







Ce qui termine la démonstration.


On conclut donc  :

Si  est pair, 

Si  est impair, 


c) Reprenons la disjonction de cas entre nombres pairs et impairs :

Pour  

Cas pair :


 donc .

Cas impair :


 et .


Et on conclut bien que 


H ( 1
2

; 0) 1
2

N −i 1

x ≡ y [z] ⇔ x ≡ y (mod z)
(an)n∈ℕ

, ∀n ∈ ℕ an = 2 × 5n + 7

∀n ∈ ℕ 2 × 5n ∀n ∈ ℕ an

5
50 = 1 ≡ 1 [8]
51 = 5 ≡ 5 [8]
52 = 25 = 4 × 8 + 1 ≡ 1 [8]
53 = 20 × 8 + 5 ≡ 5 [8]

∀k ∈ ℕ, 52k ≡ 1 [8], 52k+1 ≡ 5 [8]
k k + 1

∃m ∈ ℕ, 52k+1 = 8m + 5
52k+2 = 5 × (8m + 5) = 8 × 5m + 25 = 8 × 5m + 8 × 4 + 1 ≡ 1 [8]
52k+3 = 5 (8 (5m + 4) + 1) = 8 × 5 × (5m + 4) + 5 ≡ 5 [8]

∀n ∈ ℕ
n 5n ≡ 1 [8]
n 5n ≡ 5 [8]

k ∈ ℕ

∃m ∈ ℕ, 52k = 8m + 1 a2k = 2 × (8m + 1) + 7 = 16m + 9 ≡ 1 [8]
52k+1 = 40m + 5 a2k+1 = 2 × (40m + 5) + 7 = 80m + 17 ≡ 1[8]

∀n ∈ ℕ, an ≡ 1[8]
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2. a) admet bien des solutions car .


On peut traduire le système par 

D’où on extrait : 


Or par le théorème de Bachet-Bezout : 


Utilisons l’algorithme d’Euclide :




On « remonte » la chaîne :




 (Remarque : on n’hésite surtout pas à vérifier avec 
la calculatrice qu’on n’a pas fait d’erreur de calcul. Spoiler : j’en avais fait une !)


Notre identité de Bezout est donc : 

Ce qui nous donne : 


En réinventant dans les expressions de départ, on trouve une solution du système : 
.


Les solutions génériques sont donc 

D’après la valeur de , .


On conclut que si alors 


b) On a , donc pour 


D’après la question précédente, on trouve bien .


c) D’après le résultat précédent, les 2 quantités considérés sont  et  et sont donc congru à  
modulo . Ce qui signifie que les 3 derniers chiffres de ces nombres est .


Finalement, les 3 derniers chiffres de  sont .


3. a) 


b) Soit .

Par définition de 


Pour que , il faudrait que , ce qui est impossible.


Ce qui nous permet de conclure que .


c) D’après l’identité de Bezout, 


Or, on a déjà : 

Donc  divise , ce qui nous indique que 


Mais on sait que les  sont pairs et il reste donc .


{
x ≡ 1 [8]
x ≡ 7 [125]

8 ∧ 125 = 1

∃(k , k′￼) ∈ ℕ2, x = 8k + 1 = 125k′￼+ 7
8k − 125k′￼= 6

∃(u , v) ∈ ℕ2, 8u + 125v = 1

125 = 8 × 15 + 5,8 = 5 + 3, 5 = 3 + 2, 3 = 2 + 1

1 = 3 − 2 = 3 − (5 − 3) = − 5 + 2 × 3 = − 5 + 2 × (8 − 5) = 2 × 8 − 3 × 5
= 2 × 8 − 3 × (125 − 8 × 15) = 47 × 8 − 3 × 125

47 × 8 − 3 × 125 = 1
282 × 8 − 18 × 125 = 6

x0 = 8 × 282 + 1 = 125 × 18 + 7 = 2257

x = x0 + k (125 × 8) = x0 + 1000k , k ∈ ℕ
x0 x = 2257 + 1000k = 257 + 1000 (k + 2), k ∈ ℕ

{
x ≡ 1 [8]
x ≡ 7 [125]

x ≡ 257 [1000]

53 = 125 n ⩾ 3, an = 2 × 125 × 5n−3 + 7 ≡ 7 [125]
∀n ⩾ 3, an ≡ 257 [1000]

a2020 a2021 257
1000 257

(2 × 52020 + 7) (2 × 52021 + 7) 049

∀n ∈ ℕ, 5a2n − a2n+1 = 5 × 2 × 52n + 35 − 2 × 52n+1 − 7 = 28

d = a2n ∧ a2n+1

(an)n∈ℕ
, ∀n ∈ ℕ an = 2 × 5n + 7

d = 7 7 ∣ 2 × 5n

d ≠ 7

∃(b, c) ∈ ℤ2, b × a2n + c × a2n+1 = d

∀n ∈ ℕ, 5a2n − a2n+1 = 28
d 28 d ∈ {1; 2; 4; 7; 28}

an d = 1
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Exercice 4

I.


1. 


, donc  est bien définie sur .

Elle y est également bien dérivable, comme inverse et composée de fonctions qui le sont sur les domaines 
considérés :







On rappelle les formules usuelles : 


On trouve donc : 


2. a) En  : , donc  et .


En  : , donc  et .


b) D’après la question 1, on a , donc  est strictement décroissante entre ses limites en 
 et .


Ceci permet de conclure .


La courbe possède 2 asymptotes horizontales d’équations  et .


3. a)

b)  est strictement décroissante et réalise donc une bijection entre son domaine de définition et son image 
.


c) Définissons la fonction  par .

 est bien dérivable sur  et .


 est donc strictement décroissante et on a  et .


Elle possède bien un racine unique.

De plus, on vérifie  et .


On conclut donc que l’équation  possède une unique solution  telle que .


∀x ∈ ℝ, f (x) =
1

1 + e2x

∀x ∈ ℝ, e2x > 0 f ℝ

∀x ∈ ℝ, 1 + e2x > 0
∀x ∈ ℝ, 1 + e2x ≠ 0

( 1
u )

′￼
= −

u′￼
u2

, ( u)
′￼
=

u′￼
2 u

, (e2x)′￼= 2e2x

∀x ∈ ℝ, f ′￼(x) = −

1
2 × 2e2x

1 + e2x

1 + e2x
= −

e2x

(1 + e2x) 1 + e2x

+∞ e2x → + ∞ 1 + e2x → + ∞ f (x) =
1

1 + e2x
→ 0

−∞ e2x → 0 1 + e2x → 1 f (x) =
1

1 + e2x
→ 1

∀x ∈ ℝ, f ′￼(x) < 0 f
−∞ +∞

∀x ∈ ℝ, 0 < f (x) < 1

y = 1 y = 0

1 0

+∞

f ′￼

ℝ−∞

f

−

↘

f
J = ]0; 1[

g ∀x ∈ ℝ, g (x) = f (x) − x
g ℝ ∀x ∈ ℝ, g′￼(x) = f ′￼(x) − 1 < 0

g lim
x→−∞

g (x) = + ∞ lim
x→+∞

g (x) = − ∞

g(0,5) > 0 g(0,6) < 0

f (x) = x α 0,5 < α < 0,6
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d) Les éléments précédents nous permettent de donner :






Graphiquement, la courbe de  de situe au-dessus de la première bissectrice quand  puis passe en 
dessous.


4. Ci-dessous les 2 courbes demandées  en rouge et  en vert.


5. a) 


Compte tenu des éléments vus dans les questions précédentes, la fonction est bien définie et dérivable sur 
.








Et donc  est bien une primitive de .


b) 


Or par définition,  et donc 


D’où 


II.


1. a) 


Comme ,  est croissante. (2 façons de le « voir » : la dérivée est positive ou l’aire 
représentée augmente).


∀x < α, f (x) − x > 0
∀x > α, f (x) − x < 0

f x < α

(ζ) (ζ′￼)

∀x ∈ ℝ, h (x) = x − ln (1 + 1 + e2x)
ℝ

∀x ∈ ℝ, h′￼(x) = 1 −

1
2 × 2e2x

1 + e2x

1 + 1 + e2x
= 1 −

e2x

1 + e2x (1 + 1 + e2x)
= 1 −

e2x

1 + e2x (1 + 1 + e2x)
=

1 + e2x + 1 + e2x − e2x

1 + e2x (1 + 1 + e2x)
=

1 + e2x + 1

1 + e2x (1 + 1 + e2x)
=

1

1 + e2x
= f (x)

h f

A = ∫
α

0
f (x) d x = [h (x)]α

0
= [h (x)]α

0
= α − ln (1 + 1 + e2α) + ln (1 + 2)

1 + e2α =
1
α

1 + 1 + e2α = 1 +
1
α

=
α + 1

α

A = α − ln ( α + 1
α ) + ln (1 + 2) = α + ln

α (1 + 2)
α + 1

∀k ∈ ℕ*, ∀x ∈ ℝ+ Fk (x) = ∫
x

0
(f (t))k dt

∀t ∈ ℝ, f (t) > 0 Fk
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b) La première inégalité est évidente (un nombre positif à la puissance  reste positif) : 
.


  et donc 


On conclut .


c) Toutes les quantités étant positives, on peut intégrer l’inégalité précédente :


 trivialement.


 par définition.


 car .


Et finalement .


d)  est croissante et majorée donc converge vers une limite  en .


e) D’après la question c), .


D’après le théorème des gendarmes, on a .


2. a) 


Calculons la limite de  en  : 




Quand  et  et donc 


On conclut .


b) 


.


Donc .


c) On n’insiste pas sur cette question qui consiste à intégrer l’égalité précédente  :

.


k
∀t ∈ ℝ+, 0 ⩽ (f (t))k

∀t ∈ ℝ+, f (t) =
1

1 + e2t
⩽

1

e2t
= e−t ∀t ∈ ℝ+, (f (t))k ⩽ e−kt

∀t ∈ ℝ+, 0 ⩽ (f (t))k ⩽ e−kt

∫
x

0
0dt = 0

∫
x

0
(f (t))k dt = Fk (x)

∫
x

0
e−ktdt = [−

1
k

e−kt]
x

0
=

1
k (1 − e−kx) ⩽

1
k

0 < 1 − e−kx < 1

∀x ∈ ℝ+ 0 ⩽ Fk (x) ⩽
1
k

Fk lk +∞

∀k ∈ ℕ*, 0 ⩽ lk ⩽
1
k

lim
k→+∞

lk = 0

∀x ∈ ℝ+ F1 (x) = ∫
x

0
f (t) dt = [h (t)]x

0

h +∞

h (x) = x − ln (1 + 1 + e2x) = ln (ex) − ln (1 + 1 + e2x) = ln
1 + 1 + e2x

ex

x → + ∞, 1 + 1 + e2x ∼ ex 1 + 1 + e2x

ex
→ 1 h(x) → 0

lim
x→+∞

F1 (x) = − h (0)

∀t ∈ ℝ+, (f (t))3 − f (t) =
1

( 1 + e2x)
3 −

1

1 + e2x
=

1

1 + e2x ( 1
1 + e2x

− 1)
=

1

1 + e2x ( 1 − 1 − e2x

1 + e2x ) =
−e2x

1 + e2x (1 + e2x)
= f ′￼(x)

∀t ∈ ℝ+, (f (t))3 − f (t) = f ′￼(x)

∀x ∈ ℝ+, F3 (x) = F1 (x) + f (x) − f (0)
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d) 





Et 


Finalement, on peut écrire .


3. a) Commençons comme dans la partie précédente, avec  :





On va intégrer les 2 membres (là encore comme dans la question 2), puis procéder à une intégration par 
parties. (Remarque : l’intégration par parties est souvent une bonne piste pour faire sortir des relations 
concernant des fonctions exponentielles, trigonométriques ou des relations de récurrence avec des fonctions 
puissance).








(Désolé, la première ligne est écrit en petit, mais j’ai préféré garder le détail du calcul !)

En reprenant la relation de départ, on trouve :





Et on conclut : 


b) L’égalité demandée s’obtient directement en passant à la limite en utilisant les valeurs déjà considérées 
dans les questions précédentes :





c) On somme l’égalité précédente, toujours avec  :





Attention : il y a une faute de frappe dans l’énoncé, la somme finit sur  et non .

En simplifiant le membre de gauche qui est une somme télescopique :


.


Et finalement, on trouve la formule : 


d) On sait que 


En reprenant ce résultat dans l’égalité précédente, on obtient :


f (0) =
1

2
=

2
2

h (0) = − ln (1 + 2)
lim

x→+∞
f (x) = 0

l3 = (1 + 2) −
2

2

k ⩾ 2

∀x ∈ ℝ+, ( 1

1 + e2x )
2k+1

− ( 1

1 + e2x )
2k−1

= ( 1

1 + e2x )
2k−1

( 1
1 + e2x

− 1) = ( 1

1 + e2x )
2k−2

f ′￼(x)

F2k+1 (x) − F2k−1 (x) = ∫
x

0 ( 1

1 + e2t )
2k−2

f ′￼(t) dt = ( 1

1 + e2t )
2k−2

×
1

1 + e2t

x

0

− ∫
x

0
(2k − 2) −e2t

1 + e2t (1 + e2t) ( 1

1 + e2t )
2k−3

×
1

1 + e2t
d t

= (f (x))2k−1 − (f (0))2k−1 − (2k − 2)∫
x

0 ( 1

1 + e2t )
2k−2

f ′￼(t) dt

∀x ∈ ℝ+, F2k+1 (x) − F2k−1 (x) = (f (x))2k−1 − (f (0))2k−1 − (2k − 2) (F2k+1 (x) − F2k−1 (x))

∀x ∈ ℝ+, ∀k ⩾ 2, F2k+1 (x) − F2k−1 (x) =
1

2k + 1 [(f (x))2k−1 − (f (0))2k−1]

l2k+1 − l2k−1 =
−1

(2k − 1) ( 2)
2k−1 , k ⩾ 2

k ⩾ 2
k

∑
m=2

l2m+1 − l2m−1 =
k

∑
m=2

−1

(2m − 1) ( 2)
2m−1

l1 l3

l2k+1 − l1 =
k

∑
m=2

−1

(2m − 1) ( 2)
2m−1

l2k+1 = l1 −
k

∑
m=2

1

(2m − 1) ( 2)
2m−1

lim
k→+∞

l2k+1 = 0
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Et donc : 

lim
k→+∞

l2k+1 = l1 − lim
k→+∞

k

∑
m=2

1

(2m − 1) ( 2)
2m−1

lim
k→+∞

k

∑
m=2

1

(2m − 1) ( 2)
2m−1 = l1
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