BAC 2022 Maroc

Exercice 1

1

x+1
Cette fonction est bien définie et dérivable, comme somme de fonctions dérivables sur I'intervalle considéré.

A.1. Etudions la fonction f définie par Vx € R, h (x) = 1 —x + x% -

Ontrouve: Vx e R, h'(x) =2x — 1 +

(x+ 17
_ _ _ - 2x +2 1
Dérivons une seconde fois pour pouvoir vérifier : Vx € R, 7" (x) =2 — — = 21 1- — |
x+1 x+1)
1
Or,surR,, — <leth”(x) = 0.
x+1)
On conclut donc que f est croissante avec f’ (0) = 0, elle est donc positive.
. 5 1
Et de la méme fagon, f est croissante et f (0) = 0, on conclutdonc Vx € R, 0 <1 —x +x° — T
X+
Pour la 2éme partie de la question, nous allons étudier la fonction
1 1
VxeR, k() =x’—x*+x—1+ =(x*+1)x-D+——.
x+1 x+1

Multiplions I'inégalité parx + 1 > O ce quidonne: (x + 1) k (x) = (x2 + 1) (x2 - 1) + 1.

Finalement, le signe de g est donné par les variations de j (x) = (x2 + 1) (x2 — 1).
En dérivant (produit de fonctions dérivables), j' (x) = 2x (x2 + 1) + 2x (x2 — 1) =2x3>0
J est croissante avec un minimum de —1 en 0. On trouve donc que g est croissante et son minimum est

g (0)=0.

1

< X3
x+1

On arrive bien a la conclusion Vx € R, 0 <1 —x + x% -

2. En intégrant l'inégalité précédente (toutes les quantités sont positives), on arrive directement a :
X X X

1
Vx € Ry, J 0dt < 1—t+t2—t+—1dt<J' 3dt et donc :

0 0 0

x4

X X
VxeR,0<x——+—-In(1+x) < —.
X 5> 0<x > 3 n( x)\4
2

by
B.1.a. on approxime [n (1 + x) grace a la question précédente. Quand x — 0, In (1 +x) ~ x — 7 On

) 1
trouve donc lim f (x) = 5 et f'est continue a droite.
x=04

1.b. Calculons le taux d’accroissement en O :

x—In(1+x)

mmCry 1 2x—2<x—x—+£>—x2
JO-fO 2 2 2x—=2In(1+x) —x* 2 73 —]

~ = —

X X 2x3 2x3 3
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f@-f©O _ -1

lim 3 et donc f est dérivable a droite.

x—=04 X

1.c. Par croissance comparée, lim f (x) = 0.
X—=>00

Graphiquement I'axe des abscisses est asymptote a 6.

2.a. f est dérivable par composition de fonctions dérivables et

(1—%>x2—2x(x—ln(l+x)) X242 (140 —x -+ 2n(1+x)
* 4 _ x _ +x _ 1+x
Vx € RY, f'(x) = 7 = 3 = ;
X X X
, g (x) x
Vx € R%, f'(x) = — avec g () =x +—— —=2In (1 +x).
x3 I +x
2.b.
1+x— 2 1+ +1-2(1+ 2426 +2-2-2 2
Vrelg()=1+ X 2x_ =( X) 2( x)=x X : x__ X :
(1+x) I +x (1+x) (1I+x) (1+x)

Comme division de carrés, g’ (x) = 0.
En remarquant que (1 +)c)2 > lsurl,onconclut Vx € I, 0 < g’ (x) < x2.

x3

2.c. En intégrant comme dans la partie A, on arrive tout de suite au résultat voulu: Vx € I, 0 < g (x) < EY
2.d. g étant positive sur [, f est négative et f est décroissante.

1
3.a. f est décroissante entre ) et 0.

3.b. (Attention, on remarque que Géogébra ne « prévient » pas que la fonction par défaut n’est pas définit en
0. Comme elle peut étre prolongée, ce probléme de définition ne se voit pas du tout sur le graphique !)

0.5

0.5

C.1. Considérons la fonction x — f (x) — x.
D’apres les résultats précédents, la dérivée de cette fonction est négative et donc la fonction strictement
décroissante.

1
Elle vaut — en O et tend vers —[n(2) en 1 et posséde donc une unique racine.
Ainsi, 3! a € |0; 1], f (@) = a.
1
2a.uy € [0;1],f(0) = Setf()=1-1n().

Sipourn, u, € [0;1], u,.y =1 (u,) € |1 —In (2);%] c [0;1].

Ainsi I'héritage de la propriété est assuré etona Vn € N, u, € [0; 1].
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f(un) _f((l)

Uu,—a

u -
2.p. |2t

Uu,—a

3
X 1
D’apres la questionA2.c., Vx € I, 0 < g (x) < ? etdonc Vx € I, 0 < |f’ (x)| < g (x> 0).

Ainsi, on conclut grace au théoréme des accroissements finis :

1
|f<un)_a‘ = |un+1_a| <§ |l/tn—0!|.
- 1
2.c. On peut écrire ‘f(uo) —a| = |u1—a| <§ |u0—a|.
Supposons la propriété vraie au rang n et étudions le rangn + 1 :
1
|f<un)_a‘ = |un+l_a| <§ |Ltn—(,¥

1 n
Et par la propriété : un—a| < <§> )
1 1 1 n 1 n+1
Donc|un+1—a| <—|un—a| S=X\|=) =\~ .
3 3 3 3

Ainsi la propriété et bien héréditaire.

2.d. Soite > 0.

1n\" 1
un—a| Le s <§> <€®N1n<§> <ln(€)©N>T(3)

(Attention a changer le sens des inégalités car les quantités considérés sont négatives )

Donc, Ve >0, AN n > N >

u, — a| < € et (u,) converge vers a.

D.1. On utilise la définition de la dérivée et la relation de Chasles :

F(x+h)—F () 1( ! 1 ) 1( x ! 1
= — J f(t)dt—J f@det ) =— J f(t)dt+J f(t)dt—J f@)dt
h h x+h X h x+h X X

1 X
= —J f @) dt.
h x+h

Par continuité de f, on conclut que F est dérivable et F’ (x) = — f (x). (Note : on pouvait probablement se
contenter de la définition de l'intégrale vue en cours, on en profite pour redonner la démonstration)

2.a. Comme proposé, utilisons une intégration par partie :
1

1 1
t—In(l+t 1 1 1

F(x)=JLdt=[——(t—ln(l+t)) +I—<1——>dt

. 2 t Lot 1 +1¢

In (1 + b In(1+ 11
=ln2—u+[ln(t)]l—J —dt:an—M—ln(x)—J ———dt

by x ot +1) X Lt 1+t
(On procede par décomposition en éléments simples pour la derniére étape)
F(x)=ln2—M—ln(x)— [ln(t)]]+[ln(1+t)]l=ln2—w—ln(x)+ln(x)+ln2—ln(1+x)
X X x X

1
Finalement F' (x) = 2[n2 — (1 + —> In(1+x)
X

2.b. On utilise une nouvelle fois le premier encadrement utilisé (au premier ordre) :
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1

Quandx = 0, F' (x) =2In2 — <1 +—> In(l14+x)~2ln2—x-—1.
X

Ainsi lim F (x) = 2[n2 — 1.

x—04

1 1
lim F (x) = lim J f@dt = J f(t)dt =2In2 — 1 (le passage a la limite est assuré par les
x—04 x—04 ¥ 0

propriétés de f démontrées précédemment).

2.c. L'aire considérée est donnée par la valeur de l'intégrale calculée en 2.b.

k+1
E.1.a. On définit: Vk € N, A, = f (k) — J f(0dt.
k

k+1
Par décroissance de f'on peut encadrer : f (k) < J f®dt<f (k + 1) etdonc:
k

VEkeN, 0< A< f(k)=f(k+1).

1.b. En repartant du résultat précédent :

n—1 n—1
Vi eN, 0SS, =D A< ) f (k) —f (k+1) =£(0) —f (n) (somme teléscopique)
k=0 k=0

1
orf(0)= ) etf (n) < f(0).

1
Donc:VnEN,OSSn<5.

2.a. Par définition des S§,,, on trouve immédiatement S, — S, = A, > 0.
Ainsi S, est croissante.

2.b. D’aprés le théoréme de la limite monotone (S,) converge.

! 1 3
2.c. A :f(O)—J f)dt ==—(2In2—1) == = 2In2.
0 2 2

Par croissance de (S,,), on peut donc améliorer 'encadrement précédent et donc celui de la limite :

3 1
——=2ln2 <1< —
2 2

Exercice 2

3
2 .
11,3 = <e’Tﬂ> =e?" =1

4r

-2 : -2 - Ax 27 2
l+j+j7=1+e'3 +e'3 =e'3 <e’T+1+e’T> =e'3 (j2+1+))
2
Commee'3 #0,14+j+j2=0.

On peut aussi développer a partir de la forme algébrique de j :
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2 2 2

\/§>+<1 .\@)2_1 V3

1
1+j+j2=1+<—5+i— —+i—

2.a. (Em) 122+ mjtz+m?j =0
A= (m2) = 4m%j = m? (j* - 4j) = m? (=3j)
2

or(1—j) =1+*=2j=1+j*+j-3j=-3j
2
Et on peut donc écrire : A = [m(l —j)] :

—mj2+m(1—j) m(l—j—jz)
2b.z = > = > =m
_ .2_ s s _.2
_omiiom(-j) _mi-1-79)
Q= 2 - 2 =/

¥ i Z 3 Y Y ]
3.5 +2 =2 (14)) =27 (l + i_\/_) =/2¢'%e'3
2022 jo11n
Donc : (Z1 + 12)2022 = <\/§) 6110%6167471

) 2022 - 1011z
Orel674ﬂ=1,<,\/§> cRete' 2 €iR.

2022 o
Et (zl + 22) est un imaginaire pur.

Wy

[1.1. On peut écrire : 1 +j =

l+i£=ei
2 2

Doncz' = (1+j)z =e¢'3z

0

. ; . il0+%
En écrivant z = re'’, on obtient 7z’ = re ( 3>.

n
Ainsi, ¢ est une rotation de centre O et d’angle 5

2.a. Pour trouver les images des points considérés, on va utiliser la propriété : 1 + j +j2 = 0.

a’=(1+j)m=—mj2
b’=(1+j)mj=—mj3=—m
c’=(1+j)mj2=—mj4=—mj

b+a mj—mj? _mj

p= 2b= 2 = (1-J)
_c+/_mj—m_ﬁ 0
q - j% , - 2 ‘ - 2’ (] 1)
a+c m—m m
r= - L=2(1-))

2 2 2

. . m . . m . . m . . m . . . .
praj+r=—j(1=j)+Sji(F=1)+Z(1=j)=Zj(1=j) (1-j=14)) =0
2.c. Par caractérisation des triangles équilatéraux dans le plan complexe PQ R est équilatéral.
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Exercice 3

I.1.a. Si p est un diviseur de n, on peut écrire n = kp, k € N.
Daprés I'énoncé, (x + 1) —x"=ny =kpy =0 [p]
Ainsi, (x + 1)" = x" [p]

1.b. Si x estun multiplede p,x =rp =0 [p], r € N.

Doncx" =r"p" =0 [p]

On a par ailleurs (x + 1)" = (rp + 1)” =1 [p]

Ce qui est contradictoire avec le résultat de la question précédente.

Et x est premier avec p.
De la méme fagon, x + 1 est premier avec p.

1.c. En appliquant le petit théoréme de Fermat, on peut écrire :
x+ 1P =1 [p] etxP 1 =1 [p] dou (x + NP1 —xP~1=0 [p]

On conclut : (x + 1)7~1 = xP~! [p]

2. Sin est pair, p = 2 et la question précédente signifie alors : x + 1 = x [2] c’est qui est impossible !
Donc si n est pair, (En) n’a pas de solution.

3.a. Si p est le plus petit diviseur premier de n, p — 1 ne peut pas diviser n. Et comme il est plus petit que p,
il est forcément premier avec n.
On peut appliquer le théoréme de Bezout et donc 3(u,v) € Z2, nu + (p — 1) v =1.

3.b.u =q(p—1) +r.
On remplace dans I'égalité précédente : n <q (p - 1) + r) + (p - 1) v =1
On obtient comme demandé : nr = 1 — (p - 1) (nq + v)

3.c. Par définition des éléments, nr > 2 (on justifie rapidement que r # 0, sinon p — 1 divise nu et donc 1
ce qui est absurde car p > 2 par hypothése)etp — 1 > 2.
Il fautdoncng +v <Q0etv' = — (nq +v) > 0.

3.d. Repartons de la question 1: (x + 1)" = x" [p] >+ D" =x" [p]
or,nr =1+ (p—1)v’, ce quidonne : (x + P =Y =yl (p-1)v [p]

’

v v
Qu'on réécrit : (x + 1) [(x + I)P_l] =x [x(”_l)] [p] et avec le résultat de la question 1.c:

x4+ D17 =x1"[p]
On arrive a nouveau surx + 1 = x [p] ce qui est absurde.
Et on conclut qu’il n'y a pas de solution dans N2,

Exercice 4

I faut vérifier que E est stable par combinaison linéaire.
Soit (a, b,c,d, ﬂ,,u) e 7°.
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_(4a 34b pe 3ud\ _ (Aa+pc 3(Ab+pd)\ _
lM(d’b)+ﬂM(c’d)_</1b /1a>+<ﬂd MC>_</1b+ud Aa+puc —M(Aa+,uc,/1b+,ud)€E

1.b.

3b ¢ 3d ac +3bd 3ad +3bc
M(a,b)xM(c,d) =% = =M 3bd, b d
(a.b) x M (c.d) <b a>x<d c) (bc+ad 3bd+ac> (ac +3bd.be +ad)

1.c. Le résultat précédent nous assure de la commutativité de la multiplication dans E car le résultat est
symétrique par rapport aux 2 matrices.

On note égalementque I = M (1,0) € E.
E est donc un sous-anneau de M, (R) commutatif et unitaire.

2.¢(M(a,b) XM(c,d)) =¢<M(ac +3bd,bc +ad)> =

(ac +3bd)* =3 (be + ad)z‘
- ‘a2c2 +9b2d% + 6abed — 32 — 3a2d? — 6abcd| - |a202 + 95242 — 3b2c2 — 3a2d2‘

o (M(a.b)) x g (M(c.d)) = |a®=30%| |2 = 3d2| = 4> + 907 - 3% - 3a%d?)|

Etp <M (a, b) XM (c, d)) =@ (M (a, b)) X @ (M (c, d) ) donc @ est un homomorphisme entre les
2 groupes.

3. M (a,b) x M (a,— b) = (g 3ab> < <_“b —3”> _ <“2—3’?2 0 ) (@=L

a 0 a® - 3b?
3.b. Si M(a, b) estinversible dans (E, X ).
-1 -1
Donc det <M(a,b) X (M(a,b)) ) =det (M(a,b)) X det ((M(a,b)) ) =det(I)=1

Les 2 déterminants étant & valeurs dans Z, ils valent 1 ou —1.
Comme det (M (a, b)> = a® — 3b?, on conclut bien que 17 (M (a, b)) =1.

3.c.@ (M (a,b)) =1.

D’aprés la question 3.a. M(a, b) est inversible et son inverse est M(a, — b)

4.9 (M(a,b)) =0 |a®=30%| =0,

a et b doivent donc vérifier : a> = 3b? ce qui n'est pas possible dans Z sauf poura = b = 0.
4b. M (a,b) x M (c,d) =0 ¢ (M (a.b) x M (c,d) ) = ¢ (M (a,b) ) x ¢ (M (c.d) ) =0
Or Z est un anneau intégre donc ¢ (M (a, b)) =0oug (M (c, d)) =0.

D’aprés la question précédente ceci implique M (a, b) = OMZ(R) ouM (C, d) = OMZ(R) et démontre donc
que E est un anneau integre.

4.c. E n'est pas un corps car certains éléments ne sont pas inversibles.
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