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Exercice 1


A.1. Étudions la fonction  définie par .


Cette fonction est bien définie et dérivable, comme somme de fonctions dérivables sur l’intervalle considéré.


On trouve : .


Dérivons une seconde fois pour pouvoir vérifier : .


Or, sur ,  et .


On conclut donc que  est croissante avec , elle est donc positive.


Et de la même façon,  est croissante et , on conclut donc .


Pour la 2ème partie de la question, nous allons étudier la fonction 

.


Multiplions l’inégalité par  ce qui donne : .


Finalement, le signe de  est donné par les variations de .

En dérivant (produit de fonctions dérivables), 

 est croissante avec un minimum de  en . On trouve donc que  est croissante et son minimum est 

.


On arrive bien à la conclusion  .


2. En intégrant l’inégalité précédente (toutes les quantités sont positives), on arrive directement à :


 et donc :


.


B.1.a. on approxime  grâce à la question précédente. Quand . On 

trouve donc  et  est continue à droite.


1.b. Calculons le taux d’accroissement en  : 




f ∀x ∈ ℝ+, h (x) = 1 − x + x2 −
1

x + 1

∀x ∈ ℝ+, h′￼(x) = 2x − 1 +
1

(x + 1)2

∀x ∈ ℝ+, h′￼′￼(x) = 2 −
2x + 2
(x + 1)4 = 2 (1 −

1
(x + 1)3 )

ℝ+
1

(x + 1)3 ⩽ 1 h′￼′￼(x) ⩾ 0

f ′￼ f ′￼(0) = 0

f f (0) = 0 ∀x ∈ ℝ+, 0 ⩽ 1 − x + x2 −
1

x + 1

∀x ∈ ℝ+, k (x) = x3 − x2 + x − 1 +
1

x + 1
= (x2 + 1) (x − 1) +

1
x + 1

x + 1 > 0 (x + 1) k (x) = (x2 + 1) (x2 − 1) + 1

g j (x) = (x2 + 1) (x2 − 1)
j′￼(x) = 2x (x2 + 1) + 2x (x2 − 1) = 2x3 ⩾ 0

j −1 0 g
g (0) = 0

∀x ∈ ℝ+, 0 ⩽ 1 − x + x2 −
1

x + 1
⩽ x3

∀x ∈ ℝ+, ∫
x

0
0dt ⩽ ∫

x

0
1 − t + t2 −

1
t + 1

dt ⩽ ∫
x

0
t3dt

∀x ∈ ℝ+, 0 ⩽ x −
x2

2
+

x3

3
− ln (1 + x) ⩽

x4

4

ln (1 + x) x → 0, ln (1 + x) ∼ x −
x2

2
lim

x→0+
f (x) =

1
2

f

0

f (x) − f (0)
x

=

x − ln(1 + x)

x2 − 1
2

x
=

2x − 2ln (1 + x) − x2

2x3
∼

2x − 2 (x − x2

2 + x3

3 ) − x2

2x3
=

−1
3
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 et donc  est dérivable à droite.


1.c. Par croissance comparée, .


Graphiquement l’axe des abscisses est asymptote à .


2.a.  est dérivable par composition de fonctions dérivables et 




.


2.b. 




Comme division de carrés, .

En remarquant que  sur , on conclut .


2.c. En intégrant comme dans la partie A, on arrive tout de suite au résultat voulu : 


2.d.  étant positive sur ,  est négative et  est décroissante.


3.a.  est décroissante entre  et .


3.b. (Attention, on remarque que Géogébra ne « prévient » pas que la fonction par défaut n’est pas définit en 
0. Comme elle peut être prolongée, ce problème de définition ne se voit pas du tout sur le graphique !) 


C.1. Considérons la fonction .

D’après les résultats précédents, la dérivée de cette fonction est négative et donc la fonction strictement 
décroissante.


Elle vaut  en  et tend vers  en  et possède donc une unique racine.


Ainsi, .


2.a. ,  et .


Si pour , , .


Ainsi l’héritage de la propriété est assuré et on a .


lim
x→0+

f (x) − f (0)
x

=
−1
3

f

lim
x→∞

f (x) = 0

𝒞

f

∀x ∈ ℝ*+, f ′￼(x) =
(1 − 1

1 + x ) x2 − 2x (x − ln (1 + x))
x4

=
x − x

1 + x − 2x + 2ln (1 + x)

x3
=

−x − x
1 + x + 2ln (1 + x)

x3

∀x ∈ ℝ*+, f ′￼(x) = −
g (x)

x3
avec g (x) = x +

x
1 + x

− 2ln (1 + x)

∀x ∈ I, g′￼(x) = 1 +
1 + x − x
(1 + x)2 −

2
1 + x

=
(1 + x)2 + 1 − 2 (1 + x)

(1 + x)2 =
x2 + 2x + 2 − 2 − 2x

(1 + x)2 =
x2

(1 + x)2

g′￼(x) ⩾ 0
(1 + x)2 ⩾ 1 I ∀x ∈ I, 0 ⩽ g′￼(x) ⩽ x2

∀x ∈ I, 0 ⩽ g (x) ⩽
x3

3

g I f ′￼ f

f
1
2

0

x ↦ f (x) − x

1
2

0 −ln(2) 1

∃! α ∈ ]0; 1[, f (α) = α

u0 ∈ [0; 1] f (0) =
1
2

f (1) = 1 − ln (2)

n un ∈ [0; 1] un+1 = f (un) ∈ [1 − ln (2);
1
2 ] ⊂ [0; 1]

∀n ∈ ℕ, un ∈ [0; 1]
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2.b. 


D’après la question A.2.c.,  et donc .


Ainsi, on conclut grâce au théorème des accroissements finis : 

.


2.c. On peut écrire .


Supposons la propriété vraie au rang  et étudions le rang  :





Et par la propriété : .


Donc .


Ainsi la propriété et bien héréditaire.


2.d. Soit .


 


(Attention à changer le sens des inégalités car les quantités considérés sont négatives !)


Donc,  et  converge vers .


D.1. On utilise la définition de la dérivée et la relation de Chasles :




.


Par continuité de , on conclut que  est dérivable et . (Note : on pouvait probablement se 
contenter de la définition de l’intégrale vue en cours, on en profite pour redonner la démonstration)


2.a. Comme proposé, utilisons une intégration par partie :








(On procède par décomposition en éléments simples pour la dernière étape)





Finalement 


2.b. On utilise une nouvelle fois le premier encadrement utilisé (au premier ordre) :


un+1 − α
un − α

=
f (un) − f (α)

un − α

∀x ∈ I, 0 ⩽ g (x) ⩽
x3

3
∀x ∈ I, 0 ⩽ f ′￼(x) ⩽

1
3

(x > 0)

f (un) − α = un+1 − α ⩽
1
3

un − α

f (u0) − α = u1 − α ⩽
1
3

u0 − α

n n + 1
f (un) − α = un+1 − α ⩽

1
3

un − α

un − α ⩽ ( 1
3 )

n

un+1 − α ⩽
1
3

un − α ⩽
1
3

× ( 1
3 )

n

= ( 1
3 )

n+1

ϵ > 0

un − α ⩽ ϵ ⇔ ( 1
3 )

N

⩽ ϵ ⇔ Nln ( 1
3 ) ⩽ ln (ϵ) ⇔ N ⩾

ln (ϵ)
−ln (3)

∀ϵ > 0, ∃N n ⩾ N ⇒ un − α ⩽ ϵ (un) α

F (x + h) − F (x)
h

=
1
h (∫

1

x+h
f (t) dt − ∫

1

x
f (t) dt) =

1
h (∫

x

x+h
f (t) dt + ∫

1

x
f (t) dt − ∫

1

x
f (t) dt)

=
1
h ∫

x

x+h
f (t) dt

f F F′￼(x) = − f (x)

F (x) = ∫
1

x

t − ln (1 + t)
t2

dt = [−
1
t (t − ln (1 + t))]

1

t
+ ∫

1

x

1
t (1 −

1
1 + t ) dt

= ln2 −
ln (1 + x)

x
+ [ln (t)]1

x
− ∫

1

x

1
t (1 + t)

dt = ln2 −
ln (1 + x)

x
− ln (x) − ∫

1

x

1
t

−
1

1 + t
dt

F (x) = ln2 −
ln (1 + x)

x
− ln (x) − [ln (t)]1

x
+ [ln (1 + t)]1

x
= ln2 −

ln (1 + x)
x

− ln (x) + ln (x) + ln2 − ln (1 + x)

F (x) = 2ln2 − (1 +
1
x ) ln (1 + x)
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Quand .


Ainsi .


 (le passage à la limite est assuré par les 

propriétés de  démontrées précédemment).


2.c. L’aire considérée est donnée par la valeur de l’intégrale calculée en 2.b.


E.1.a. On définit : .


Par décroissance de  on peut encadrer :  et donc :


.


1.b. En repartant du résultat précédent : 

 (somme téléscopique)


Or  et .


Donc : .


2.a. Par définition des , on trouve immédiatement .

Ainsi  est croissante.


2.b. D’après le théorème de la limite monotone  converge.


2.c. .


Par croissance de , on peut donc améliorer l’encadrement précédent et donc celui de la limite : 

.


Exercice 2


I.1. 





Comme , .


On peut aussi développer à partir de la forme algébrique de  :


x → 0+, F (x) = 2ln2 − (1 +
1
x ) ln (1 + x) ∼ 2ln2 − x − 1

lim
x→0+

F (x) = 2ln2 − 1

lim
x→0+

F (x) = lim
x→0+ ∫

1

x
f (t) dt = ∫

1

0
f (t) dt = 2ln2 − 1

f

∀k ∈ ℕ, Δk = f (k) − ∫
k+1

k
f (t) dt

f f (k) ⩽ ∫
k+1

k
f (t) dt ⩽ f (k + 1)

∀k ∈ ℕ, 0 ⩽ Δk ⩽ f (k) − f (k + 1)

∀n ∈ ℕ, 0 ⩽ Sn =
n−1

∑
k=0

Δk ⩽
n−1

∑
k=0

f (k) − f (k + 1) = f (0) − f (n)

f (0) =
1
2

f (n) ⩽ f (0)

∀n ∈ ℕ, 0 ⩽ Sn ⩽
1
2

Sn Sn+1 − Sn = Δn ⩾ 0
Sn

(Sn)

Δ0 = f (0) − ∫
1

0
f (t) dt =

1
2

− (2ln2 − 1) =
3
2

− 2ln2

(Sn)
3
2

− 2ln2 ⩽ l ⩽
1
2

j3 = (ei 2π
3 )

3

= ei2π = 1

1 + j + j2 = 1 + ei 2π
3 + ei 4π

3 = ei 2π
3 (ei 4π

3 + 1 + ei 2π
3 ) = ei 2π

3 (j2 + 1 + j)
ei 2π

3 ≠ 0 1 + j + j2 = 0

j
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2.a. 





Or 


Et on peut donc écrire : .


2.b. 





3. 


Donc : 


Or ,  et .


Et  est un imaginaire pur.


II.1. On peut écrire : .


Donc .


En écrivant , on obtient .


Ainsi,  est une rotation de centre  et d’angle .


2.a. Pour trouver les images des points considérés, on va utiliser la propriété : .






















2.c. Par caractérisation des triangles équilatéraux dans le plan complexe  est équilatéral.


1 + j + j2 = 1 + (−
1
2

+ i
3

2 ) + (−
1
2

+ i
3

2 )
2

=
1
2

+ i
3

2
+

1
4

−
3
4

− 2i
3

4
= 0

(Em) : z2 + m j2z + m2 j = 0
Δ = (m j2)2 − 4m2 j = m2 (j4 − 4j) = m2 (−3j)

(1 − j)2 = 1 + j2 − 2j = 1 + j2 + j − 3j = − 3j

Δ = [m (1 − j)]
2

z1 =
−m j2 + m (1 − j)

2
=

m (1 − j − j2)
2

= m

z2 =
−m j2 − m (1 − j)

2
=

m (j − 1 − j2)
2

= jm

z1 + z2 = 2ei π
4 (1 + j) = 2ei π

4 ( 1
2

+ i
3

2 ) = 2ei π
4 ei π

3

(z1 + z2)2022 = ( 2)
2022

ei 1011π
2 ei674π

ei674π = 1 ( 2)
2022

∈ ℝ ei 1011π
2 ∈ iℝ

(z1 + z2)2022

1 + j =
1
2

+ i
3

2
= ei π

3

z′￼= (1 + j) z = ei π
3 z

z = reiθ z′￼= rei(θ + π
3 )

φ O
π
3

1 + j + j2 = 0

a′￼= (1 + j) m = − m j2

b′￼= (1 + j) m j = − m j3 = − m
c′￼= (1 + j) m j2 = − m j4 = − m j

p =
b + a′￼

2
=

m j − m j2

2
=

m j
2 (1 − j)

q =
c + b′￼

2
=

m j2 − m
2

=
m
2 (j2 − 1)

r =
a + c′￼

2
=

m − m j
2

=
m
2 (1 − j)

p + q j + r j2 =
m
2

j (1 − j) +
m
2

j (j2 − 1) +
m
2

j2 (1 − j) =
m
2

j (1 − j) (1 − j − 1 + j) = 0

PQR
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Exercice 3

I.1.a. Si  est un diviseur de , on peut écrire .


D’après l’énoncé, .


Ainsi, .


1.b. Si  est un multiple de , .

Donc .

On a par ailleurs 


Ce qui est contradictoire avec le résultat de la question précédente.

Et  est premier avec .

De la même façon,  est premier avec .


1.c. En appliquant le petit théorème de Fermat, on peut écrire :

 et , d’où 


On conclut : .


2. Si  est pair,  et la question précédente signifie alors : , c’est qui est impossible !

Donc si  est pair,  n’a pas de solution.


3.a. Si  est le plus petit diviseur premier de ,  ne peut pas diviser . Et comme il est plus petit que , 
il est forcément premier avec .

On peut appliquer le théorème de Bezout et donc .


3.b. .


On remplace dans l’égalité précédente : .


On obtient comme demandé : 


3.c. Par définition des éléments,  (on justifie rapidement que , sinon  divise  et donc  
ce qui est absurde car  par hypothèse) et .

Il faut donc  et .


3.d. Repartons de la question 1 : 


Or, , ce qui donne : 


Qu’on réécrit :  et avec le résultat de la question 1.c :




On arrive à nouveau sur , ce qui est absurde.

Et on conclut qu’il n’y a pas de solution dans .


Exercice 4

I.1.a.  et 


Il faut vérifier que  est stable par combinaison linéaire.

Soit .


p n n = k p, k ∈ ℕ

(x + 1)n − xn = ny = k py ≡ 0 [p]
(x + 1)n ≡ xn [p]
x p x = r p ≡ 0 [p], r ∈ ℕ

xn = rnpn ≡ 0 [p]
(x + 1)n = (r p + 1)n ≡ 1 [p]

x p
x + 1 p

(x + 1)p−1 ≡ 1 [p] xp−1 ≡ 1 [p] (x + 1)p−1 − xp−1 ≡ 0 [p]
(x + 1)p−1 ≡ xp−1 [p]

n p = 2 x + 1 ≡ x [2]
n (En)

p n p − 1 n p
n

∃(u , v) ∈ ℤ2, nu + (p − 1) v = 1

u = q (p − 1) + r
n (q (p − 1) + r) + (p − 1) v = 1

nr = 1 − (p − 1) (nq + v)
nr > 2 r ≠ 0 p − 1 nu 1

p > 2 p − 1 ⩾ 2
nq + v < 0 v′￼= − (nq + v) > 0

(x + 1)n ≡ xn [p] ⇒ (x + 1)nr ≡ xnr [p]
nr = 1 + (p − 1) v′￼ (x + 1)1+(p − 1)v′￼≡ x1+(p − 1)v′￼[p]

(x + 1) [(x + 1)p−1]
v′￼

≡ x [x(p−1)]
v′￼

[p]
(x + 1) 1v′￼≡ x1v′￼[p]

x + 1 ≡ x [p]
ℕ2

E ⊂ M2 (ℝ) 0M2(ℝ) = M(0,0) ∈ E
E

(a , b, c, d , λ , μ) ∈ ℤ6
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1.b. 




1.c. Le résultat précédent nous assure de la commutativité de la multiplication dans  car le résultat est 
symétrique par rapport aux 2 matrices.

On note également que .


 est donc un sous-anneau de  commutatif et unitaire.


2. 








Et , donc  est un homomorphisme entre les 

2 groupes.


3.a. .


3.b. Si  est inversible dans .


Donc 


Les 2 déterminants étant à valeurs dans , ils valent  ou .


Comme , on conclut bien que .


3.c. .


D’après la question 3.a.  est inversible et son inverse est 


4.a. .


 et  doivent donc vérifier :  ce qui n’est pas possible dans  sauf pour .


4.b. 


Or  est un anneau intègre donc  ou .


D’après la question précédente ceci implique  ou  et démontre donc 

que  est un anneau intègre.


4.c.  n’est pas un corps car certains éléments ne sont pas inversibles.

λ M (a , b) + μM (c, d) = (λa 3λb
λb λa ) + (μc 3μd

μd μc ) = (λa + μc 3 (λb + μd)
λb + μd λa + μc ) = M (λa + μc, λb + μd) ∈ E

M (a , b) × M (c, d) = (a 3b
b a ) × (c 3d

d c ) = (ac + 3bd 3a d + 3bc
bc + a d 3bd + ac ) = M (ac + 3bd , bc + a d)

E

I = M (1,0) ∈ E
E M2 (ℝ)

φ (M (a , b) × M (c, d)) = φ (M (ac + 3bd , bc + a d)) = (ac + 3bd)2 − 3 (bc + a d)2

= a2c2 + 9b2d2 + 6abcd − 3b2c2 − 3a2d2 − 6abcd = a2c2 + 9b2d2 − 3b2c2 − 3a2d2

φ (M (a , b)) × φ (M (c, d)) = a2 − 3b2 c2 − 3d2 = a2c2 + 9b2d2 − 3b2c2 − 3a2d2

φ (M (a , b) × M (c, d)) = φ (M (a , b)) × φ (M (c, d)) φ

M (a , b) × M (a , − b) = (a 3b
b a ) × ( a −3b

−b a ) = (a2 − 3b2 0
0 a2 − 3b2) = (a2 − 3b2) I

M(a , b) (E, × )

det (M (a , b) × (M (a , b))
−1) = det (M (a , b)) × det ((M (a , b))

−1) = det (I ) = 1

ℤ 1 −1
det (M (a , b)) = a2 − 3b2 φ (M (a , b)) = 1

φ (M (a , b)) = 1
M(a , b) M(a , − b)

φ (M (a , b)) = 0 ⇔ a2 − 3b2 = 0
a b a2 = 3b2 ℤ a = b = 0

M (a , b) × M (c, d) = 0 ⇒ φ (M (a , b) × M (c, d)) = φ (M (a , b)) × φ (M (c, d)) = 0

ℤ φ (M (a , b)) = 0 φ (M (c, d)) = 0
M (a , b) = 0M2(ℝ) M (c, d) = 0M2(ℝ)

E

E
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